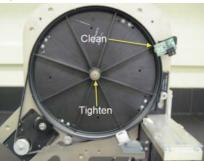



### 

## 1 Pre-Site Investigative Procedures

- 1.1 Review Abbottlink logs (if applicable) for issues
- 1.2 Prior to site visit, interview  $\mathfrak{M}_1$  for any on-going problems / issues
- 1.3 Assemble necessary parts

## 2 Initial On-Site Investigative Procedures


- 2.1 Wear appropriate PPE & follow safety requirements for area
- 2.2 Review customer logs noting any discrepancies
- 2.3 Review QC and Calibration history
- 2.4 Verify TSB and ISA status of instrument
- 2.5 Verify customer has current back-up to Hard Drive and CD
- - 3.1 Reference ISA 116-085(latest revision) for specific RV loader service / alignment as required
  - 3.2 Clean (3) sensors on transport PCB  $\square_1 \square_2 \square_3$
  - 3.3 Inspect belts for alignment & cracks
  - 3.4 Check bearing screw on loader wheel for tightness  $\square_4$
  - 3.5 Clean RV Wheel home sensor  $\square_4$
  - 3.6 When calibrating Loader (procedure on final pg.) ensure no RV's are present in the transporter or at the process path drop point

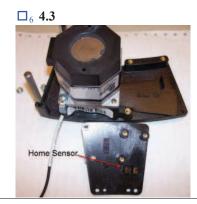


Sensors 2 & 3 are internal to the transport assy. Clean with canned air or remove PCBand clean manually.



 $\square_4$  3.4 / 3.5








- 4.1 Clean and verify arm movement  $\square_5$
- 4.2 Inspect for cracks or wear
- 4.3 Clean home sensor  $\square_6$
- 4.4 Verify motor screws are tight
- 4.5 Inspect sensor cable (W161) for damage
- 4.6 Inspect & Seal electrical connectors with silicone compound as needed \*

**□**<sub>5</sub> 4.1





# 5 RV Load / Unload Diverter &





R&R B2.07 / 2.15---Live) / (R&R B2.07 / 2.15---Local)

- 5.1 Identify diverter as old / new style
- 5.2 Clean Sensors □<sub>7</sub>
- 5.3 Clean underside ridge, rotator, & paddle area  $\square_8$
- 5.4 Inspect wires for cracks & wear
- 5.5 Inspect & Seal electrical connectors with silicone compound as needed 🛠
- 5.6 NOTE: When mounted back to the PP cover, verify the R1 & Sample probes do not contact the wires when moving through the diverter assembly

 $\square_7$  5.2 **Old Style** 







□<sub>7</sub> 5.2 **New Style** 



□<sub>8</sub> 5.3 **New Style** 









(R&R B2.19---Live Link) / (R&R B2.19---Local Link)

- 6.1 Identify diverter as old / new style
- 6.2 Clean Shutter & Sensors □<sub>9</sub>
- 6.3 Clean underside ARM & related area  $\square_{10}$
- 6.4 Inspect & Seal electrical connectors with silicone compound as needed 🛠


 $\square_9$  6.2 **Old Style** 



□<sub>10</sub> 6.3 **Old Style** 



**□**<sub>9</sub> 6.2 **New Style** 



□<sub>10</sub> 6.3 **New Style** 







[ (R&R B1.05---Live Link) / (R&R B1.05---Local Link)

- 7.1 Clean Sensor  $\square_{11}$
- 7.2 Inspect & Seal electrical connectors with silicone compound as needed 🛠

□<sub>11</sub> **7.1** 







(R&R G1.07--- Local Link)

- 8.1 Clean & remove buffer build-up  $\square_{12}$ 
  - 8.1a Reference ISA 116-126 (latest revision) for cleaning procedure
  - 8.1b Utilize wooden cuticle stick for heavy build-up removal and a soft tooth brush for finer substances
  - 8.1c Caution should be taken around nozzle area to avoid altering the factory set angle
  - 8.1d Reference video link for manifold cleaning tips (Cleaning Washzone Manifold Live Link)
- 8.2 Inspect for cracks, leakage, & broken components. Focus special attention to thermistor cables
- 8.3 Inspect <u>Trigger / Pre-Trigger Valves ONLY</u> for date code verification  $\square_{13}$ 
  - 8.3a Replace Trigger / Pre-Trigger valves with date code > 2yrs 🛠
  - 8.3b Example shown indicates a manufacturing date of November 2010
  - 8.3c Write installation date on replacement Trigger / Pre-Trigger Valves for future 2 yr date verification  $\square_{14}$
- 8.4 Inspect & Seal electrical connectors with silicone compound as needed 🛠

□<sub>12</sub> 8.1







□<sub>14</sub> 8.3c



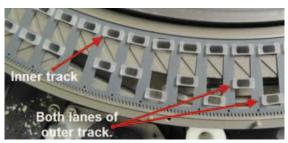


- 9.1 Inspect Process Path under Wash Zone Manifolds & Diverters for buffer build-up
- 9.2 IF excess build-up is found continue to STEP 10
- 9.3 IF no excess build-up is found continue to STEP 13
- 9.4 NOTE: @The entire Process Path is recommended to be cleaned once per year regardless of build-up found

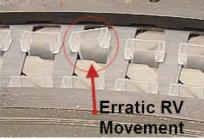



- 10 Process Path Top Cover (R&R B2.01--Live Link) / (R&R B2.01---Local Link)
  - 10.1 Clean underside of buildup  $\square_{15}$
  - 10.2 Inspect for cracks & burrs

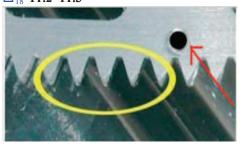



11 Process Path Disc 🐼 🗘






- 11.1 Leave RV's in disc(inner track & both lanes of outer track) & rotate CCW observing for erratic movement  $\square_{16}$ 
  - 11.1a Special attention to lane change & WZ areas
  - 11.1b Areas of erratic movement should be noted for cleaning during step #11 (Process Path)  $\square_{17}$
- 11.2 Inspect disc / gear teeth for grooves, etching & wear  $\square_{18}$
- 11.3 Confirm all disc holes are open & free of debris  $\square_{18}$ 
  - 11.3a A hex wrench slightly smaller than the holes can be utilized to remove any debris


 $\square_{16}$  11.1



 $\square_{17}$  11.1b



 $\square_{18}$  11.2 11.3



# 12 Process Path 🐼 🛕

- 12.1 Clean entire process path  $\square_{19} \square_{20}$ 
  - 12.1a Special attention to areas causing erratic RV movement
  - 12.1b Common problem areas: wash zones, vortexers, diverters, "S" curves, & optics
  - 12.1c Reference video link for manifold cleaning tips (Cleaning Process Path Live Link)
  - 12.1d Commonly used tools: wooden cuticle sticks, lint free wipes, soft bristle tooth brush, DI water, & swabs
  - 12.1e NOTE: <u>DO NOT</u> use metal tools in the process path as they may remove protective coating
- 12.2 Reference ISA 116-065 (latest revision) for details



 $\square_{20}$  12.1



13 Inner Reagent Carousel



[ (R&R D1.02---Live Link) / (R&R D1.02---Local Link)

- 13.1 Remove & clean carousel
- 13.2 Inspect V-Ridge area for wear, chips & cracks  $\square_{21}$
- 13.3 If metal band is present, check for wear and separation of the band

□<sub>21</sub> 13.2



14 Dispersion Carousel 🐼 🔨





[] (R&R D1.03---Live Link) / (R&R D1.03---Local Link)

- 14.1 Remove Dispersion Carousel
- 14.2 Determine carousel drive type (Gear vs. Chain)  $\square_{22}$   $\square_{23}$ 
  - 14.2a IF Chain Drive go to STEP 15
  - 14.2b IF Gear Drive go to STEP 16

□<sub>22</sub> 14.2



□<sub>23</sub> 14.2



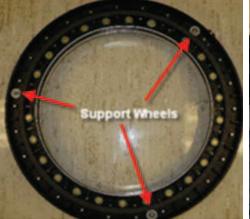
# 15 Chain Drive - Dispersion Carousel 🚱 🔨

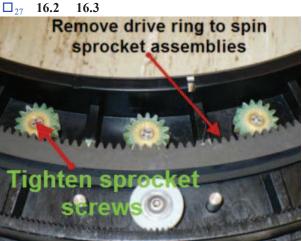


- 15.1 @Inspect & Lubricate chain assembly. Replace as required. Reference ISA 116-098 (latest revision) 11 🛠
  - 15.1a Utilize silicone compound as lubricant 🛠
- 15.2 @Inspect & Replace station bearings as required  $\square_{24}$ 
  - 15.2a Spin sprocket assemblies identifying slow & erratic movement
  - 15.2b Replace identified sprocket assembly bearings
- 15.3 Tighten all sprocket mounting screws  $\square_{25}$
- 15.4 Inspect V-Ridge area for wear, chips & cracks. If metal band is present check for fit, wear, and band separation

□<sub>24</sub> 15.2







### 16 Gear Drive – Dispersion Carousel

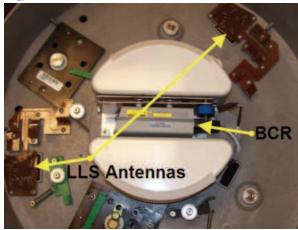


- 16.1 @Inspect & Replace (3) Support Wheels as required. Reference portions of TSB 116-043B (latest revision) □<sub>26</sub>
- 16.2 Inspect & Replace station bearings as required  $\square_{27}$
- 16.2a Spin sprocket assemblies identifying slow & erratic movement
- 16.2b Replace identified sprocket assembly bearings
- 16.3 Tighten all sprocket mounting screws  $\square_{27}$
- 16.4 Lubricate ring gear with aqua lube grease 🛠
- 16.5 Inspect V-Ridge area for wear, chips & cracks. If metal band is present check for fit, wear, and band separation

□<sub>26</sub> 16.1






- 17.1 Inspect (6) V-Wheels & replace as needed □<sub>28</sub> 🛠
- 17.2 Inspect & Clean R1 / R2 LLS Antennas □<sub>29</sub>
- 17.3 Clean barcode reader with lint free tissue  $\square_{29}$
- 17.4 Clean / Vacuum base plate

□<sub>28</sub> 17.1









## (R&R B2.10---Live Link) / (R&R B2.10---Local Link)

- 18.1 Remove (4) i2000SR vortexers
- 18.2 Determine if vortexer is *Stabilized* or *Original Design Cup* type  $\square_{30} \square_{31}$ 
  - 18.2a IF Original Design Cup type
  - 18.2b Remove (4) screws retaining motor cover & remove cover □<sub>32</sub>
  - 18.2c If corrosion is found replace vortexer
- 18.3 Verify cup will fully extend & retract
- 18.4 Return Vortexers to their original positions.
  - 18.4a If vortexer #3 at Pre-Trigger location is original style, ensure the cup is metal and NOT plastic
  - 18.4b If original style is present and the cup is determine to be plastic, replace with new Stabilized style vortexer
- 18.5 Inspect & Seal electrical connectors with silicone compound as needed 🛠

□<sub>30</sub> 18.2



□<sub>31</sub> 18.2



18.2b



## 19 Wash Cups 🐼 🗘

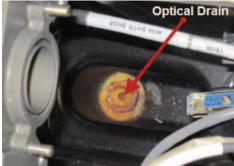


## [] (R&R K1.14---Live Link) / (R&R K1.14---Local Link)

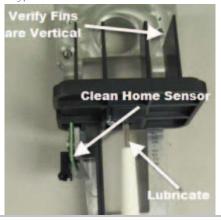
- 19.1 Remove & clean (4) wash stations
- 19.2 Inspect for cracks
- 19.3 Verify ground resistance utilizing ISA 116-122 (latest revision)

## 20 CMIA Reader / Shutter &




[] (<u>R&R C1.01---Live Link)</u> / (<u>R&R C1.01---Local Link</u>)

- 20.1 Inspect CMIA Reader / Shutter with assemblies remaining attached to process path area
- 20.2 IF no residual build-up is noted continue to step 21
- 20.3 IF residual build-up is noted continue to step 20.4
- 20.4 Remove CMIA Reader
  - 20.4a Ensure cap is added to light pipe ASAP.  $\square_{33}$
  - 20.4b Remove cap & clean Light Pipe with lint free wipes or swabs
  - 20.4c Reinstall light pipe cap
- 20.5 Remove shutter
  - 20.5a Clean home sensor & lubricate drive rod with Super Lube Grease  $\square_{34}$
  - 20.5b Verify / Straighten vertical fins □<sub>34</sub>
- 20.6 Inspect & Seal Shutter (NOT CMIA READER) electrical connector with silicone compound as needed 🛠
- 20.7 Prior to installing shutter / CMIA reader, ensure optics drain is not occluded □<sub>35</sub>

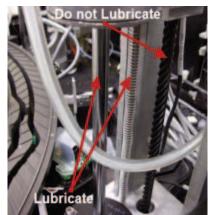

20.4a  $\square_{33}$ 



 $\square_{35}$  **20.7** 



 $\square_{34}$ 20.5a 20.5b




# 21 Pipettors 🚱 🔨

- 21.1 Inspect probes for obstructions & straightness
- 21.2 Inspect & clean probe clamps
- 21.3 Verify tightness of crash sensor locknut (underside of probe arm)
- 21.4 Clean & lubricate shafts □<sub>36</sub>
  - 21.4a Clean shafts with methanol
  - 21.4b Lubricate metal shafts with Super Lube Oil X
  - 21.4c DO NOT lubricate Teflon (plastic) lead screw
- 21.5 Check (3) screws @ Z-nut for tightness □<sub>37</sub>
  - 21.5a If Z-nut is worn it is available as an individual part to avoid replacement of entire pipettor assembly
- 21.6 Inspect Pressure Monitors for tubing tightness & leakage □<sub>38</sub>

- 21.6a If leaking -- replace DO NOT apply teflon tape to attempt a fix
- 21.7 Inspect all tubing / fittings for tightness & leakage

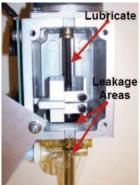
 $\square_{36}$  21.4



 $\square_{37}$  21.5



□<sub>38</sub> 21.6






[] (R&R E3.02---Live Link) / (R&R E3.02---Local Link)

- 22.1 Remove & inspect (4) syringes for leakage
- 22.2 Clean & Lubricate lead screw with Super Lube Grease □<sub>39</sub> 🛠


 $\square_{39}$  22.2





- 23.1 Inspect all FMI / Buffer pumps for leakage  $\square_{40}$ 
  - 23.1a Verify tightness of pump tubings
  - 23.1b Inspect & Seal electrical connectors with silicone compound as needed \*
- 23.2 Inspect gutters & entire pump bay for leakage  $\square_{41}$ 
  - 23.2a Utilize ISA 116-111 & TSB 116-079 (latest revisions) for leaking gutter repairs
- 23.3 Inspect drain manifold for leakage & cracks □<sub>42</sub>
  - 23.3a Replace manifold foam plug if dirty or worn  $\square_{43}$

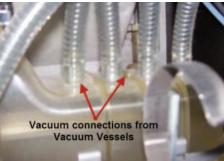
 $\square_{40}$  23.1



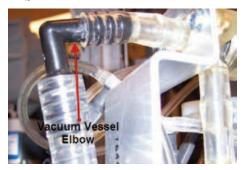
□<sub>41</sub> 23.2






 $\square_{43}$ 23.3a






- 24.1 Inspect tubing from vacuum vessels #1/#2 to vacuum accumulator  $\square_{44}$ 
  - 24.1a Remove tubing at vacuum vessel elbow and vacuum accumulator  $\square_{45}$
  - 24.1b Flush tubing & elbow with DI water and remove any build-up
- 24.2 Inspect vacuum accumulator for blockage and remove any water present
- 24.3 @Inspect vacuum pump, rebuild or replace as necessary.
- 24.4 Inspect vacuum vessel fittings for leaks & blockage □<sub>46</sub>
- 24.5 Remove & clean vacuum vessel solenoids □<sub>47</sub>
  - 24.5a Clean internal plunger / spring assembly  $\square_{48}$
- 23.7 Remove & clean vacuum accumulator drain valve □<sub>49</sub>





 $\square_{45}$ 24.1a



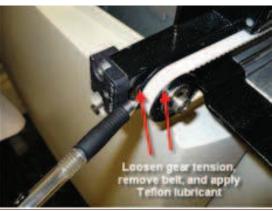
 $\square_{46}$  24.4



 $\square_{48}$ 24.5a



□<sub>47</sub> 24.5






# 25 RSH 🗞 🛕 🔝

- 25.1 Clean RSH components utilizing M&D 6311
- 25.2 Perform pulley lubrication □<sub>50</sub>
  - 25.2a Release belt tension & apply Super Lube Oil 🛠
  - 25.2b Retention belt
- 25.3 Clean transport sensors & rails  $\square_{51}$
- 25.4 Vacuum bays & rack sensor area

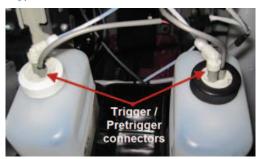
□<sub>50</sub> 25.2



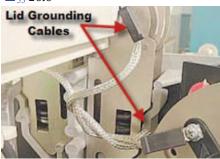


# 26 Miscellaneous 🚱 🗘

- 26.1 Clean refrigerator cooling fins  $\square_{52}$ 
  - 26.1a Located directly behind internal buffer storage tank
- 26.2 Clean card cage air filter
- 26.3 Clean card cage ventilation screen
  - 26.3a Located above card cage filter & below card cage in certain units
  - 26.3b NOTE: <u>DO NOT</u> use a vacuum in / around the card cage unless it is an <u>anti-static model</u>
- 26.4 Verify waste chute is free of debris & clean waste chute sensor □<sub>53</sub>
- 26.5 Inspect Trigger / Pre-Trigger straws and bulk solution connections □<sub>54</sub>
- 26.6 Verify lid shield grounding utilizing TSB-116-029 (latest revision) □<sub>55</sub>
- 26.7 Verify UPS system batteries are functional


□<sub>52</sub> **26.1** 








□<sub>54</sub> 26.5



□<sub>55</sub> 26.6



# 27 System Checks &





- 27.1 Calibrate RV Loader (P-40)
- 27.2 Perform M&D 1119 RSH Transport Calibration
- 27.3 Perform M&D 2055 Wash Zone Valve Pressure Check for Wash Zone Manifold Valves ONLY
  - 27.3a Replace any valves that fail pressure check M&D

NOTE: TSB 116-099 (latest revision) must be installed to utilize M&D 2055

- 27.4 Perform M&D 1020 Optics Background Test
- 27.5 Verify ARM / Transfer Pump Operation
  - 27.5a Verify Internal Buffer Tank has capacity to add buffer
  - 27.5b ARM PRESENT: manually instruct ARM to fill internal buffer tank
  - 27.5c ARM NOT PRESENT: mix external solution and transfer to internal buffer tank

## 28 Verify Performance 🐼 🗥





- 28.1 Complete QC run of one (2) step assay & one stat assay if available
  - 28.1a Utilize all control levels for each assay

### 29 System Backup

29.1 Backup system to hard drive & CD (M&D 6004)

### 30 Exit Interview

- 30.1 Review PM checklist with customer
- 30.2 Review customers current consumable part inventory
- 30.3 Have customer verify instrument operation

## ✓ Pre-Checks (before starting this procedure) ☐ Verify On-Hand Consumable Supplies ☐ Verify On-Hand PM Parts **X** Tools & Materials **CONSUMABLE SUPPLIES** $\Box$ (7-14233-01) Aqua Lube Grease □ (7-204410-01) Silicone Compound (in 35ml syringe) $\Box$ (14237-015) Super Lube Oil $\square$ (2-94851-02) Super Lube Grease $\square$ (N/A) Canned Air / Source Locally @RECOMMENDED ON-HAND PARTS $\Box$ (7-78016-XX) Carousel Support Wheel Kit ①2 □ (7-201782-XX) Vacuum Pump Kit □ (7-200826-XX) 5 Strand Dispersion Chain **1** □ (7-200602-XX) Bearing Kit (25 Stations) □ (7-90038-XX) Anti Foam Plug □ (7-77612-XX) Manifold Valve □ (7-64293-XX) V-Wheels (6 / pack)

**People** (required or to be notified)

Used only w/chain drive dispersion carousel system
Used only w/ gear drive dispersion carousel system

☐ **1** Customer: Manager / Supervisor

**Information Details** 

**1** 

### **Hazards**



**Potential Biohazard**- Identifies an activity or area where potentially infectious materials may be present. Refer to <u>Biological Hazard</u>



Class 2 Laser Product - Warns against direct viewing into the barcode laser beam or reflections from the beam. Refer to <u>Laser Hazard</u>



Chemical Hazard - Identifies an activity or area where hazardous chemicals are present. Refer to the Material Safety Data Sheet (MSDS) or package insert for specific safety information.

Refer to Chemical Hazard



**Electrostatic Discharge -** Identifies an activity or area where operator must wear a ground strap while servicing the system

Refer to Electrostatic Discharge



**Hot Surface** - Identifies an area where a hot surface is present. Refer to Hot Surface

Talsico® Process Picture Maps™ & all associated intellectual property are owned by Talsico International, ABN 20 419 167 619, & subject to licensing Agreement End of document