Service Manual

Datascope AS 3000°

ANESTHESIA DELIVERY SYSTEM

Service Manual

Datascope AS 3000°

ANESTHESIA DELIVERY SYSTEM

AS3000[™] is a U.S. trademark of Mindray DS USA, Inc.

Krytox[®] is a U.S. registered trademark of E. I. du Pont de Nemours and Company

Selectatec[®] is a U.S. trademark of Datex Ohmeda

Glyptal[®] is a U.S. registered trademark of Glyptal, Inc.

Dräger Vapor[®] and plug-in system S-2000 are registered trademarks of Dräger Medical.

Copyright $^{\odot}$ Mindray DS USA, Inc., 2008. All rights reserved. Contents of this publication may not be reproduced in any form without permission of Mindray DS USA, Inc.

Foreword	
Warnings, Cautions and Notes	
Warnings	
Cautions	
Notes	
ory of Operation	1 - 1
Introduction	1 - 1
Microprocessor-controlled Ventilator	1 - 2
Components	1 - 3
Front View	1 - 3
Side View	
Rear View	1 - 2
Other components (not identified in graphics)	1 - 6
Breathing System	1 - 9
The Ventilator Unit	1 - 9
Adjustable Alarms	1 - 10
Compliance Compensation	1 - 10
Electrical Supply	
Electrical components	1 - 1
Ventilator Control and Drive	
BDU (Basic Digital Unit)	
Amplifier Board	1 - 14
Drive Gas Pressure Sensor Board	
PAW Pressure Sensor Board	1 - 20
Breathing System Heater	
Sensor Board	1 - 20
Power Management	1 - 20
Battery	1 - 28
Power Supply	1 - 28
Anesthesia System Components	1 - 29
Auxiliary Outlets	1 - 29
Absorber Heater Wire Board	1 - 29
Work Light Board	1 - 29
Ventilator UI	1 - 3°
Keyboard Board	1 - 3 ⁻
Display	1 - 34
Communication Interface / RS232 Isolate Board	1 - 33
Fuses	1 - 33
Ventilator Pneumatic - O ₂ Drive Gas	
Ventilator pneumatic drive	
Drive Pressure-High pressure regulator	
Gas Box Assembly	1 - 30
Tube color coding	
The Breathing System	
CMV mode, inspiration	
CMV mode, expiration	
Manual mode, inspiration	
Manual mode, expiration	
Pneumatic PEEP	
Ventilator in Standby	
Breathing System Components	
Ventilation Bellows System	1 - 30

	Manual Breathing Bag	1 - 39
	CO ₂ Absorber	1 - 39
	Inspiratory and Expiratory Valves	1 - 39
	APL (Airway Pressure Limiting) valve	1 - 39
nsta	ıllation Guide	2 - 1
D	Delivery of The New Anesthesia Machine	2 - 1
	Assembly	
	Unpacking	
	Breathing System and Breathing System Accessories	
	Attaching the Mounting Arms and User Interface	
	Breathing System Connections	
	Anesthesia System Connections	
	Tank Wrench and Pre-operation Checklist	
	Patient Suction Regulator and Arm	
	Suction Canister Bracket	
	Utility Tray, Monitor Mounting Arm with Utility Hook(s)	
	Vaporizers	
	High Pressure Hoses	
	Emergency Cylinder(s)	
	Breathing Circuit, CO ₂ Absorbent, and Liquid Vaporizer Agent	
	Monitoring Products - Mounting and Electrical Connection	
	Agent Monitor Waste Gas Scavenging	
	Oxygen Sensor Calibration	
In	nstallation Checkout Procedure	
	air Information	
•	ntroduction	
	Narnings and Cautions	
٧	Warnings and Cautions	
	Cautions	
т.	roubleshooting Guidelines	
	· · · · · · · · · · · · · · · · · · ·	
	Special Tools Required	
- 11	roubleshooting Chart	
	Common Symptoms and Corrective Actions for Field Service Technicians	
	eak Troubleshooting	
10	est Pneumatics	
	Leak Test - Manual Ventilation Test	
	Safety Valve Test	
	Leak Test - Automatic Ventilation Test	
	Compliance Test	
Pi	Ineumatic Hose and Wiring Diagrams	
	Pneumatic Hose Labeling	
	Sampling Pipeline Module Interface Labeling	
	Electrical Cable Labeling	
•	acement Parts and Accessories	
	ntroduction	
Α	Available Replacement Parts and Sub-Assemblies	
	Exchange Program	
	Replacement Parts Pricing Information	
	Ordering Information	
ls	sometric Drawings	
	Chassis	
	Chassis Parts List	4 - 5

	Breathing System	4 - 6
	Breathing System Parts List	4 - 11
	Electric Box	4 - 12
	Electric Box Parts List	4 - 12
	Gas Circuit Box	4 - 13
	Gas Circuit Box Parts List	4 - 13
	User Interface	4 - 14
	User Interface Parts List	4 - 15
	Flowmeter	4 - 16
	Flowmeter Parts List	4 - 16
Calil	bration	5 - 1
	Introduction	5 - 1
	Calibration Warnings, Precautions, and Notes	
	Warnings	
	Cautions	
	Notes	
(General Guidelines	
	Test Equipment and Special Tools Required	
	Calibration Procedures	
	Oxygen Sensor Calibration	
	Proportional Valve Regulator Calibration	
	Flow Sensor Calibration	
	Flow Valve Calibration	
	Paw Sensor	
	PEEP Valve	
	Flow Meter	
	Leakage detection.	
	Startup leakage detection	
	APL Valve leakage detection	
	Safety Valve leakage detection	
	Breathing System leakage detection	
	Compliance detection	
Dori	odic Maintenanceodic Maintenance	
	Maintenance Schedule	
	Periodic Maintenance Consumable Parts Kits	
	Periodic Maintenance Consumable Faris Kirs	
	Visual Inspection Checklist	
	Replacement of Consumable Parts	
(Check Valve Cleaning	
	Tools and Materials	
	Cleaning Procedure	
	Battery Maintenance and Replacement	
	Battery Maintenance	
	Battery Replacement	
	Functional Tests	
	Test Equipment and Special Tools Required.	
	Pressure Regulator Checks	
	Proportional Valve Regulator	
	Gas Delivery System Tests	
	O ₂ Flush Verification	
	O ₂ :N ₂ O Ratio System	6 - 15 6 - 15
	STORT-LID LOSTS	6 - 15

System Self Test	 6 - 1
Leak/Safety Valve Test	 6 - 1
Leak Test	 6 - 1
Compliance Test	 6 - 2
Manual Leak Test	 6 - 2
Oxygen Sensor Calibration	 6 - 2
Pneumatic Leak Tests	 . 6 - 2
N ₂ O Cylinder Leak Test	
O ₂ Cylinder Leak Test	
AIR Cylinder Leak Test	
Line Supply Check Valves Test	
N ₂ O Line Pressure Leak Test	
O ₂ Line Pressure Leak Test	
AIR Line Pressure Leak Test	
Cylinder Supply Check Valves Test	
Breathing System Checks	
Waste Gas Scavenger Test (if available)	
Internal Gas Connections Test	
Drive Gas Pressure Loss Alarm, N ₂ O Cutoff Test	
Performance Verification	
Standby Mode Ventilation Test	
Manual Mode Ventilation Test	
APNEA Alarm Test	
Alarm MUTE Test	
CMV Adult Ventilation Mode Test	
CMV Child Ventilation Mode Test.	
Airway Disconnect Alarm Test	
PCV Adult Ventilation Mode Test	
Pressure Support (PS) Ventilation Mode Test	
Alarms and Failsafe Functions	
Set Up	
Low FiO ₂ Alarm Test	
High FiO ₂ Alarm Test	
Peak Pressure Alarms Test	
Minute Volume Alarm Test	
Miscellaneous Tests	 . 6 - 3
Test the Line Voltage Alarm	
Wheel Brakes Test	 6 - 3
Work Light Test	 6 - 3
Auxiliary Flowmeter	 6 - 3
Patient Suction Regulator (if available)	 6 - 3
Vaporizers	 . 6 - 3
Vaporizer Interlock Test	 6 - 3
Vaporizer Accuracy Test	 6 - 3
Vaporizer Leak Test	
Dräger Vapor 2000 Operating Instructions ARRB-F001	
Electrical Tests	
Convenience AC Outlets Test	
Electrical Safety Inspection Test	
AS3000 Installation Checklist	
ning	
Cleaning and Disinfecting the ASSOON	 . 6 3

Cleaning and Sterilizing the Breathing System and Components	6 - 39
Preoperative Checklist	6 - 39
Phone Numbers and How To Get Assistance	
Warranty	7 - 1
Warranty Statements	7 - 1
Disclaimers	
Product Improvements	
Manufacturer's Responsibility	

This page intentionally left blank.

Foreword Introduction

Foreword

This Service Manual is intended as a guide for technically qualified personnel performing repair and calibration procedures.

Warnings, Cautions and Notes

Please read and adhere to all warnings, cautions and notes listed here and in the appropriate areas throughout this manual.

A **WARNING** is provided to alert the user to potential serious outcomes (death, injury, or serious adverse events) to the patient or the user.

A **CAUTION** is provided to alert the user to use special care necessary for the safe and effective use of the device. They may include actions to be taken to avoid effects on patients or users that may not be potentially life threatening or result in serious injury, but about which the user should be aware. Cautions are also provided to alert the user to adverse effects on this device of use or misuse and the care necessary to avoid such effects.

A **NOTE** is provided when additional general information is applicable.

Warnings

WARNING: Whenever using anesthetic gases, nitrous oxide, oxygen, or

any hospital gas always follow the appropriate agent evacuation/collection procedures. Use the hospital gas

evacuation system.

WARNING: For continued protection against fire hazard, replace all

fuses with the specified type and rating.

WARNING: In order to prevent an electric shock, the machine

(protection class I) may only be connected to a correctly grounded mains connection (socket outlet with grounding

contact).

WARNING: Remove all accessory equipment from the shelf before

moving the anesthesia machine over bumps or on any inclined surface. Heavy top loading can cause the machine

to tip over causing injury.

WARNING: Possible explosion hazard. Do not operate machine near

flammable anesthetic agents or other flammable substances. Do not use flammable anesthetic agents (i.e.,

ether or cyclopropane.)

WARNING: The use of anti-static or electrically conductive respiration

tubes, when utilizing high frequency electric surgery equipment, may cause burns and is therefore not recommended in any application of this machine.

WARNING: Possible electric shock hazard. The machine may only be

opened by authorized service personnel.

Introduction Cautions

WARNING: Compressed gasses are considered Dangerous Goods/

Hazardous Materials per I.A.T.A. and D.O.T. regulations. It is a violation of federal and international law to offer any

package or over pack of dangerous goods for

transportation without the package being appropriately identified, packed, marked, classified, labeled and documented according to D.O.T. and I.A.T.A. regulations. Please refer to the applicable I.A.T.A. Dangerous Goods Regulations and /or the Code of Federal Regulations 49 (Transportation, Parts 171-180) for further information.

WARNING: Avoid exposure to respiratory gases by always directing

the fresh gas flow from the fresh gas outlet to the waste gas

scavenger.

Cautions

CAUTION: This device uses high pressure compressed gas. When

> attaching or disconnecting backup gas cylinders, always turn the cylinder valves slowly. Use the AS3000 flow meters to bleed down the pressure, watching the cylinder gauge indicate the depleting cylinder pressure, before

> disconnecting the cylinder from the yoke. Always open and

close cylinder valves fully.

CAUTION: This device operates using compressed gas at high

pressures from the hospital central supply. When connecting gas supply lines attach the hose connection to the machine before connecting the quick disconnect fitting to the hospital source. Disconnect the supply hose from the hospital source connection prior to disconnecting it from the AS3000 gas

connection fittings.

CAUTION: Refer to the "Periodic Maintenance Schedule of Service

Activities" on page 6-2, in the Periodic Maintenance section for assistance when performing scheduled periodic

maintenance.

CAUTION: Do not leave gas cylinder valves open if the pipeline supply

is in use and the system master switch is turned to 'ON'. If used simultaneously, cylinder supplies could be depleted, leaving an insufficient reserve supply in the event of

pipeline failure.

CAUTION: Use cleaning agent sparingly. Excess fluid could enter the

machine, causing damage.

CAUTION: This machine must only be operated by trained, skilled

medical staff.

CAUTION: Perform the electrical safety inspection as the last step after

> completing a repair or after routine maintenance. Perform this inspection with all covers, panels, and screws installed.

CAUTION: After changing the CO₂ absorbent, carry out a system leak

CAUTION: Only Selectatec[™] compatible vaporizers with Interlock-

System may be used with the AS3000 unit.

CAUTION: After each exchange of a vaporizer, carry out a system Leak

test.

Notes Introduction

CAUTION: The bellows dome cannot be autoclaved.

CAUTION: Do not clean the machine while it is on and/or plugged in.

CAUTION: Pressing "Quit" at any time during the procedure will cancel

the session's settings and reload the previously-stored

calibration coefficients.

CAUTION: Depleted soda lime changes color. Replace the soda lime if

approximately 2/3 of the absorber content is discolored. CO₂ absorbent can be safely changed without stopping

mechanical ventilation.

Notes

NOTE: Unauthorized servicing may void the remainder of the

warranty. Check with the factory or with a local authorized distributor to determine the warranty status of a particular

instrument.

Introduction Notes

This page intentionally left blank.

Theory of Operation

1.1 Introduction

The **AS3000** is a continuous flow anesthesia system which offers manual or automatic ventilation, easily adjustable fresh gas delivery, anesthetic agent delivery, ventilation monitoring, convenient ergonomics, and state-of-the-art safety systems. The components of the **AS3000** Anesthesia System are described this chapter.

1.2 Microprocessor-controlled Ventilator

The Microprocessor-controlled ventilator, with its dedicated Breathing System, allows time-controlled, pressure limited, constant volume ventilation for all patient groups within a tidal volume range of 40 mL (4 kg infant) to 1400 mL (large adult).

Time-controlled, pressure limited, and compliance compensated constant volume ventilation is provided through the Controlled Mandatory Ventilation (CMV) mode. The CMV mode delivers a viable ventilation method for complicated lung conditions. The ventilator also provides time-controlled, volume dependant ventilation, targeting a set (adjustable) target pressure provided through the Pressure Controlled Ventilation (PCV) mode. Automatic and comprehensive system startup tests and alarm management systems ensure controlled ventilation conditions in every mode of operation.

The durable and ergonomically designed user interface and Navigator[™] Knob enables easy operation. The display provides the selected ventilation modes (CMV, PCV, PS and SIMV) and the following values: Tidal Volume, Peak Pressure, Mean Pressure, FiO₂, Breath Rate, I:E Ratio, PEEP, Plateau Pressure, Alarm limits, and real-time Airway Pressure and flow waveform.

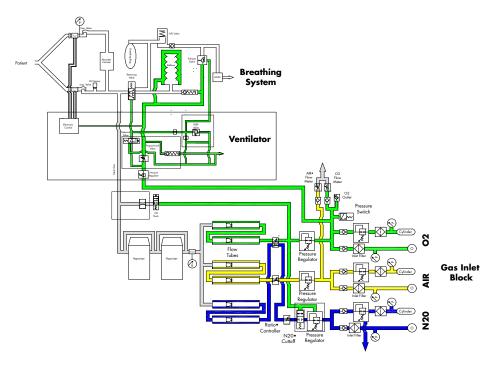


FIGURE 1-1 The AS3000 Pneumatic System

Theory of Operation Components

1.3 Components

1.3.1 Front View

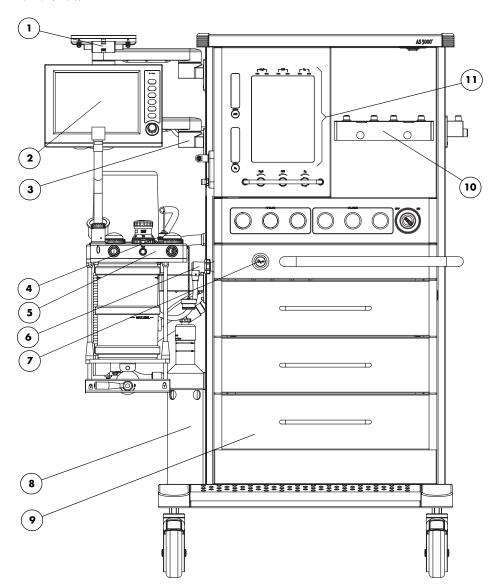


FIGURE 1-2 AS3000 Front View

1. Monitor Arm

The Monitor Arm provides support for a bedside monitor. It can easily rotate for more convenient viewing.

2. User Interface

The display of the user Interface provides waveforms, numeric data and menu tabs. The keys and Navigator Knob enable the user to power up the system, silence alarms, access menu tabs, and switch between manual and mechanic ventilation.

Components Theory of Operation

3. UI Arm

The UI Arm provides support for the user interface assembly. It can easily rotate for more convenient viewing.

4. Oxygen Sensor

The Oxygen Sensor monitors the oxygen concentration of the inspired gas of the Breathing System.

5. Breathing System

The Breathing System's main function is to store anesthetic gas, oxygen, and air; vent exhaust gas; and absorb carbon dioxide. It connects directly to the respiratory passage to help complete the breathing process.

6. CGO (Common Gas Outlet) Subassembly

Mixed gas composed of O_2 , AIR, N_2O , and anesthetic agent connects to the patient's Breathing System via a flexible tube from the CGO Subassembly.

7. O₂ Flush Valve

The O_2 Flush Valve is located on the front of the **AS3000**. The supplied gas does not pass the flowmeter and vaporizer. It is directly sent to the fresh gas outlet. Press this button to supply gas (35 - 50 L/min). Release this switch to automatically close the gas supply.

8. AGSS (Anesthetic Gas Scavenging System)

The AGSS (Anesthetic Gas Scavenging System) reclaims exhausted gas generated during anesthesia.

9. Drawer Subassembly

The **AS3000** has three drawers for storage, which can be locked and fixed through the uppermost drawer lock.

10. Vaporizer Mounting Manifold

The Vaporizer Mounting Manifold provides support for up to two Selectatec[®] compatible anesthetic vaporizers.

11. Flowmeter

The Flowmeter displays gas flow values for N_2O , O_2 , AIR, Auxiliary O_2 , and Auxiliary AIR. It consists of coarse and fine flow tubes used to accurately measure gas flow with additional flow tubes to measure auxiliary O_2 and AIR gas flow.

Flow tube measurement values:

GAS	FINE FLOW TUBE	-01 UNITS	-02 UNITS	AUXILIARY FLOW TUBE
N ₂ O	0 - 1 L/min	1 - 12 L/min	1 - 10 L/min	N/A
02	0 - 1 L/min	1 - 10 L/min	1 - 10 L/min	0 - 15 L/min
AIR	0 - 1 L/min	1 - 15 L/min	1 - 12 L/min	0 - 15 L/min

COARSE FLOW TURE

Theory of Operation Components

1.3.2 Side View

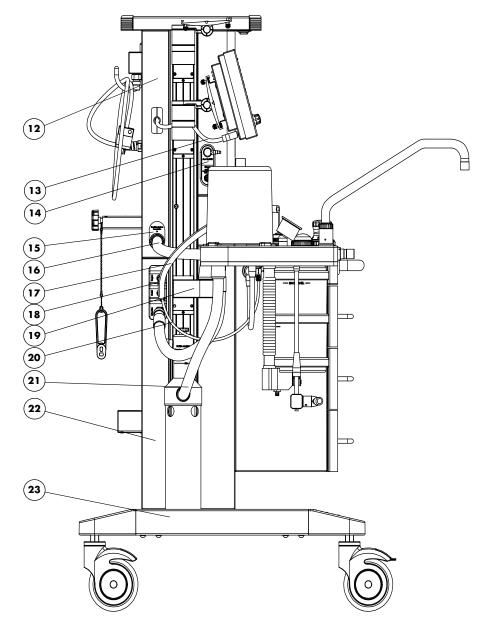


FIGURE 1-3 AS3000 Side View

12. Upper Mainframe Subassembly

The Upper Mainframe Subassembly provides support for the pressure gauges, the Flowmeter, the gas box assembly, the mains supply assembly, and the YOKE assembly.

13. User Interface Cable

The User Interface Cable provides signal transmission between the User Interface and the main unit.

Components Theory of Operation

14. Auxiliary Gas Outlet Assembly

The Auxiliary Gas Outlet Assembly provides the patient with auxiliary oxygen and air mixtures (of different concentrations). It also contains an O_2 connection for use with other equipment.

15. Breathing System Interface

The Breathing System Interface provides a connection interface for gas signal acquisition between the Breathing System and gas circuit.

16. Breathing System Pneumatic Hose

The Breathing System Pneumatic Hose provides multiple connections including: PEEP control, Auto/Manual control, and four pressure sampling connections between the Breathing System and mainframe.

17. O₂ Sensor Cable

The O_2 Sensor Cable provides a connection between the oxygen sensor component in the Breathing System and the oxygen concentration signal acquisition port on outlet module of the mainframe.

18. Breathing System Interface

The Breathing System Interface provides the main unit with an interface for connection with drive gas, heating system and the oxygen concentration sensor of the Breathing System.

19. The Breathing System Support Arm

The Breathing System Support Arm provides connection between the Breathing System and the mainframe, in order to support the Breathing System.

20. Heater Wire

The Heater Wire provides connection to the heating system of the Breathing System. By heating the Breathing System during anesthesia, accumulation of water in the Breathing System is minimized. It also provides comfortable gas to the patient.

21. AGSS Transfer Hose

The AGSS Transfer Hose provides pipeline connection between the exhaust gas outlet of the Breathing System and the AGSS evacuation system.

22. Lower Mainframe Assembly

The Lower Mainframe Assembly provides support for the drawer subassembly, outlet module, CGO subassembly, O₂ flush valve and the electric box. Together with the Upper Mainframe Subassembly and Base Assembly, forms the mainframe of the machine.

23. Base Assembly

The Base Assembly provides support to the whole machine. The four casters provide movement for the machine in any direction. The front casters have a locking function.

Theory of Operation Components

1.3.3 Rear View

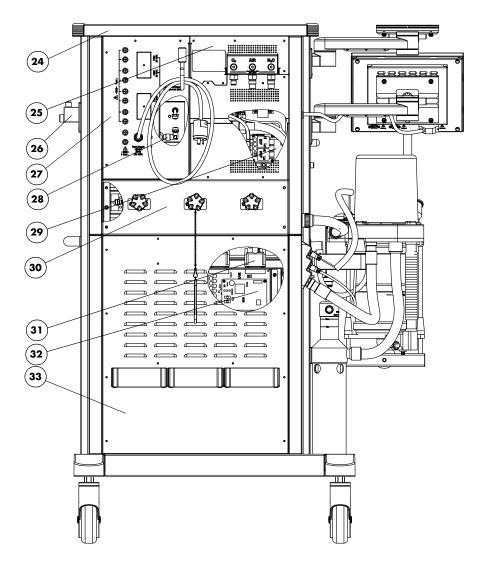


FIGURE 1-4 AS3000 Rear View

24. Top Shelf Assembly

The Top shelf Assembly includes the work light and its switch. It also serves as a storage area.

25. Gas Input Assembly

The Gas Input Assembly allows gas in the pipeline and backup gas cylinder to enter the **AS3000** for regulation. The Pressure regulator reduces pressure to 36 psi (250 kPa). The O₂ operated valve can open allowing N₂O to enter the flowmeter only when O₂ pressure is above 7.3 psi (50 kPa). Otherwise, N₂O cannot enter the gas circuit. The pressure switch generates a signal when the input pressure is below 29 psi (200 kPa), and the system will provide an audible alarm.

Components Theory of Operation

26. Vaporizer Storage Mount

The Vaporizer Storage Mount provides the **AS3000** with auxiliary placement for a vaporizer.

27. Mains Supply Assembly

The Mains Supply Assembly attaches the **A53000** to an external AC wall outlet. It also supplies power throughout the unit.

28. Electronic Flowmeter Assembly

The Electronic Flowmeter Assembly provides fresh gas flow measurement for the AS3000.

29. Gas Box Assembly

The Gas Box Assembly provides drive gas to the Breathing System and includes a safety valve to insure that pressure stays below 85 cmH₂O. It also contains the PEEP valve, and the differential pressure sensors.

30. YOKE Assembly

The YOKE Assembly provides connection for three backup gas cylinders. The pressure regulator for the backup gas cylinder reduces the pressure of a high pressure gas cylinder down to 43.5 psi (300 kPa).

31. AMP Cables

The AMP Cables provide signal transmission between the electric box and gas circuit box.

32. Electric Box Assembly

The Electric Box Assembly provides, and distributes power to the **AS3000**.

33. Rear Panel Assembly

The Rear Panel Assembly protects, and provides heat dissipation for the electric box and auxiliary support for the backup gas cylinder.

1.3.4 Other components (not identified in graphics)

34. Inspiratory and Expiratory Valves

The Inspiratory and Expiratory Valves are unidirectional valves that allow air to flow in only one direction.

35. Absorber Canister

The **AS3000** uses two Absorber Canisters which can contain 1500 mL of soda lime each. They can be used for 6 - 8 hours each if full. Water generated from the reaction with CO_2 is drained from a valve on the lower side of the canister.

36. APL (Airway Pressure Limiting) Valve

The APL Valve is used for limiting maximum airway pressure during manual ventilation. The adjustable range of the APL is 0 - 70 cmH₂O.

Theory of Operation Components

37. Bellows Assembly

The **A53000** employs ascending ventilation bellows, in which mixed gas is stored. Drive gas supplied by the ventilator forces the bellows to descend sending mixed gas into the inspiratory passage of patient's airway. If a patient's airway suffers from gas leakage, the bellows will collapse, informing the operator of a possible problem. A tidal volume scale is provided on the transparent dome, through which a patient's tidal volume can be estimated.

38. Pressure-relief Valve

The Pressure-relief Valve is located at the base of the bellows. When end-expiration airway pressure reaches 1 - 3 cmH₂O, the pressure-relief valve opens and redundant gas is expelled.

39. Exhaust Gas Outlet

The Exhaust Gas Outlet is located on the lower part of the Breathing System. It is connected to the AGSS or via the AGSS transfer tube.

40. Absorber Heating System

The Breathing System is heated to body temperature to avoid humidified gases condensing within the Breathing System thus improving airway climatization for the patient's re-breathing of respiratory gases.

1.3.5 Breathing System

The Breathing System is integrated into a compact aluminum block. This block is heated to body temperature to prevent condensing of humidified gases within the Breathing System, thus improving airway climatization for the patient's re-breathing of respiratory gases. The heated Breathing System contains: an inspiratory valve with O_2 adapter for FiO_2 measurement, expiratory valve, APL Valve, breathing bag connection, and internal inspiratory and expiratory flow sensors.

1.3.6 The Ventilator Unit

The **AS3000** ventilator offers multiple ventilation modes: Controlled Mandatory Ventilation with volume control (CMV), Pressure Control Ventilation (PCV), Synchronized Intermittent Mandatory Ventilation (SIMV), and Pressure Support (PS) ventilation. Electronic PEEP is available in all ventilation modes. User control over inspiratory flow (SLOPE) is possible in PCV, SIMV, and PS modes. Automatic fresh gas compensation limits the effect of user changes in fresh gas flow rate on the patient. The traditional bellows system is driven by oxygen and makes patient disconnections clearly visible.

Components Theory of Operation

1.3.7 Adjustable Alarms

Minimum and maximum alarm limits can be set for Peak Pressure, Mean Pressure and FiO₂. Minimum alarm limits can be set for Tidal Volume and Minute Volume. Exceeding the peak pressure alarm limit automatically halts the inspiratory phase preventing airway pressure from exceeding the high alarm setting. In the CMV mode, when reaching this pressure limit, a "High Airway Pressure" alarm is displayed, and inspiration is discontinued. The next inspiration occurs at the regular time interval, preventing increase of the respiratory rate. The result is a decreased tidal volume (T Vol.) and minute volume (M Vol.). During pressure limitation, the ventilator displays the alarm message until the condition is corrected.

1.3.8 Compliance Compensation

Compliance compensation automatically corrects for the expansion of the circuit in CMV ventilation mode. System compliance is measured by the ventilator to maintain the set tidal volume (±15%). The compliance test may be bypassed at machine power up. When bypassing the compliance test, the default settings are used.

1 - 10 0070-10-0683 AS3000™ Service Manual

Theory of Operation Electrical Supply

1.4 Electrical Supply

1.4.1 Electrical components

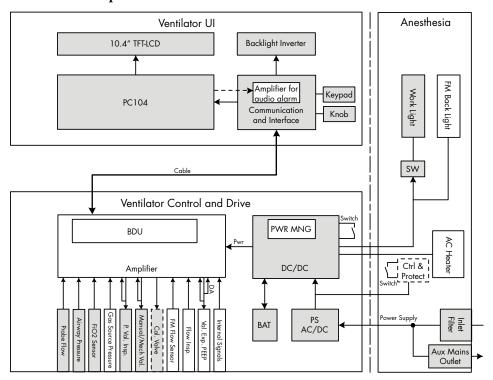


FIGURE 1-5 Electrical Components Overview

Ventilator Control and Drive Theory of Operation

1.5 Ventilator Control and Drive

1.5.1 BDU (Basic Digital Unit)

The BDU serves as the active ventilator control. The BDU controls the actions of the PEEP, calibration, and proportional valves, and reads the signal flow, and pressure sensors and valves

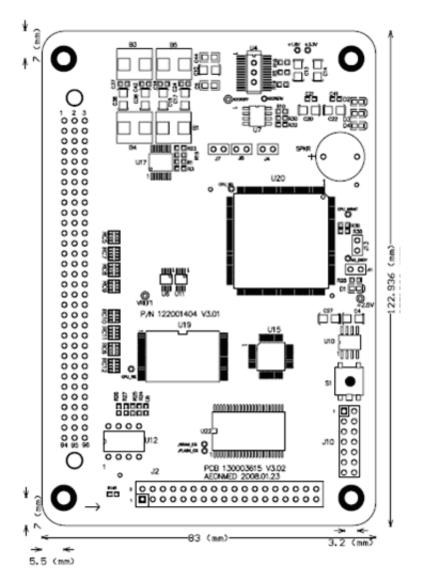


FIGURE 1-6 BDU Control Board, Top View

1 - 12 0070-10-0683 AS3000™ Service Manual

Theory of Operation Ventilator Control and Drive

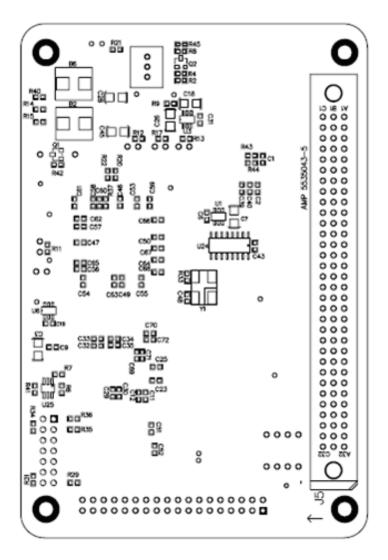


FIGURE 1-7 BDU Control Board, Bottom View

Ventilator Control and Drive Theory of Operation

1.5.1.1 Amplifier Board

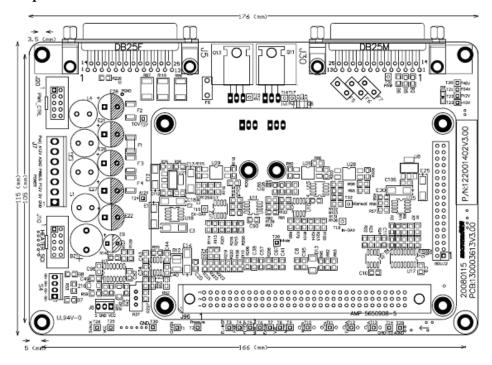


FIGURE 1-8 Amplifier Board, Top View

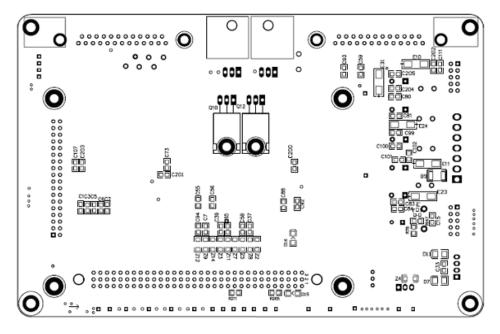


FIGURE 1-9 Amplifier Board, Bottom View

1 - 14 0070-10-0683 AS3000™ Service Manual

Theory of Operation Ventilator Control and Drive

O₂ Sensor Input, S4

PIN	NAME	FUNCTION
1.	O ₂ -	O ₂ Sensor Input -
2.	O ₂ -	O ₂ Sensor Input -
3.	O ₂ +	O ₂ Sensor Input +
4.	O ₂ +	O ₂ Sensor Input +

DC Power Input, J7

PIN	NAME	FUNCTION
1.	GND	Power Ground
2.	+5V	Controller Logic Power
3.	P12V	Power 12V
4.	PWBUS	Power Bus 24V
5.	GND	Analog Ground
6.	A12V	Analog 12V
7.	5V/4.8V	Power 5V/4.8V

Power Control, J20

PIN	NAME	FUNCTION
1.	GND	Ground
2.	/PWON	Power On Enable, Low active
3.	PWEN	Power On Enable, High active
4.	5VAUX	5V Auxiliary
5.	DC_M	AC/DC Monitor signal
6.	PWBUS	Power bus
7.	BAT_M	Battery Monitor signal
8.	APE	Auxiliary Power Enable
9.	CHAR_SIGNAL	Charge Status, No connection
10.	/MUTE	Mute, No connection

Signals and Power to Keyboard, J5

PIN	NAME	FUNCTION
1.	ENPW	Power Enable, High active
2.	/PWON /	Power on Enable, Low active
3.	5VAUX	5V Auxiliary
4.	APE	Auxiliary Power Enable
5.	GND	Ground
6.	TTLRX	TTL Receive
7.	232ARX	RS232A Receive
8.	232BRX	RS232B Receive
9.	GND	Ground

Ventilator Control and Drive Theory of Operation

Signals and Power to Keyboard, J5 (Continued)

PIN	NAME	FUNCTION
10.	PWBUS	PowerBus
11.	PWBUS	PowerBus
12.	PWBUS	PowerBus
13.	GND	Ground
14.	GND	Ground
15.	DC24V	DC24V monitor
16.	BATV+	Battery monitor
1 <i>7</i> .	/MUTE	No connection
18.	GND	Ground
19.	TTLTX	TTL Transmit
20.	232ATX	RS232A Transmit
21.	232BTX	RS232B Transmit
22.	GND	Ground
23.	PWBUS	PowerBus
24.	PWBUS	PowerBus
25.	GND	Ground

Signals and Power to Sensor Board, J30

PIN	NAME	FUNCTION
1.	A+12V	Analogue +12V
2.	FL_INS	Import flow
3.	FL_EXP	Export flow
4.	FM_FL	Flowmeter flow
5.	Pair	Pressure of air
6.	Paw	Pressure inside air way
7.	Pgas	Pressure gas supply status
8.	GND	Ground
9.	AGND	Analog Ground
10.	AGND	Analog Ground
11.	P24V	Power 24V
12.	P24V	Power 24V
13.	P24V	Power 24V
14.	P12V	Power 12V
15.	P12V	Power 12
16.	P5V	Power 5V
1 <i>7</i> .	P5V	Power 5V
18.	Inhale	Inspire Valve
19.	Man	Manual/AUTO Valve
20.	Exhale	Expire Valve
21.	Exhale	Expire Valve
22.	AGND	Analog Ground

1 - 16 0070-10-0683 AS3000™ Service Manual

Theory of Operation Ventilator Control and Drive

Signals and Power to Sensor Board, J30 (Continued)

PIN	NAME	FUNCTION
23.	AGND	Analog Ground
24.	AGND	Analog Ground
25.	AGND	Analog Ground

Bus to BDU, J96

PIN	NAME	FUNCTION
1 - 3	5V	5V Power
4 - 6	GND	Ground

Test Point Definition

T1 FIO2 ADC input of O2 Sensor 0.25-0.51V (In AIR) T2 Pgas Pressure switch of gas supply, low active T3 FL_INSP Inspire Flow signal 0.20-0.30V (0 flow) T4 Pair Absolute Pressure of air way pressure 1.7-2.1V (atmospheric pressure) T5 FL_EXP Expire flow signal 0.20-0.30V (0 flow) T6 Fm_fl Flow of flowmeter 0.25-0.51V (flowmeter off) T7 AD-Exhale PEEP valve, current feedback Level depends on PEEP setting and vent mode. No activity may indicate open connection from driver to valve (ie. bad cable) T8 Volt Internal power inspect T9 MUTE Not used T10 M-EN Manual/Auto mode select T11 V-EN Valves enable Input Global valve enable signal. Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Val	DESIGNATOR	NAME	FUNCTION	RANGE
T3 FL_INSP Inspire Flow signal 0.20-0.30V (0 flow) T4 Pair Absolute Pressure of air way 1.7-2.1V (atmospheric pressure) T5 FL_EXP Expire flow signal 0.20-0.30V (0 flow) T6 Fm_fl Flow of flowmeter 0.25-0.51V (flowmeter off) T7 AD-Exhale PEEP valve, current feedback level depends on PEEP setting and vent mode. No activity may indicate open connection from driver to valve (ie. bad cable) T8 Volt Internal power inspect T9 MUTE Not used T10 M-EN Manual/Auto mode select T11 V-EN Valves enable Input Global valve enable signal. Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 T19 XVG PEEP valve drive signal - drives T15 setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T1	FIO ₂	ADC input of O ₂ Sensor	0.25-0.51V (In AIR)
T4 Pair Absolute Pressure of air way 1.7-2.1V (atmospheric pressure) T5 FL_EXP Expire flow signal 0.20-0.30V (0 flow) T6 Fm_fl Flow of flowmeter 0.25-0.51V (flowmeter off) T7 AD-Exhale PEEP valve, current feedback Level depends on PEEP setting and vent mode. No activity may indicate open connection from driver to valve (ie. bad cable) T8 Volt Internal power inspect T9 MUTE Not used T10 M-EN Manual/Auto mode select T11 V-EN Valves enable Input Global valve enable signal. Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 T19 XVG PEEP valve drive signal - drives setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T2	Pgas		
T5 FL_EXP Expire flow signal 0.20-0.30V (0 flow) T6 Fm_fl Flow of flowmeter 0.25-0.51V (flowmeter off) T7 AD-Exhale PEEP valve, current feedback Level depends on PEEP setting and vent mode. No activity may indicate open connection from driver to valve (ie. bad cable) T8 Volt Internal power inspect T9 MUTE Not used T10 M-EN Manual/Auto mode select T11 V-EN Valves enable Input Global valve enable signal. Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 T19 XVG PEEP valve drive signal - drives settings. T10 PADJ Power 4.8V 4.8V T21 P24V Power 24V	T3	FL_INSP	Inspire Flow signal	0.20-0.30V (0 flow)
T6 Fm_fl Flow of flowmeter 0.25-0.51V (flowmeter off) T7 AD-Exhale PEEP valve, current feedback Level depends on PEEP setting and vent mode. No activity may indicate open connection from driver to valve (ie. bad cable) T8 Volt Internal power inspect T9 MUTE Not used T10 M-EN Manual/Auto mode select T11 V-EN Valves enable Input Global valve enable signal. Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives 116 and T28 Level depends on machine settings. T19 XVG PEEP valve drive signal - drives 115 and T7 Level depends on PEEP setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T4	Pair	Absolute Pressure of air way	
T7 AD-Exhale PEEP valve, current feedback Level depends on PEEP setting and vent mode. No activity may indicate open connection from driver to valve (ie. bad cable) T8 Volt Internal power inspect T9 MUTE Not used T10 M-EN Manual/Auto mode select T11 V-EN Valves enable Input Global valve enable signal. Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 T19 XVG PEEP valve drive signal - drives settings. T19 ADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T5	FL_EXP	Expire flow signal	0.20-0.30V (0 flow)
setting and vent mode. No activity may indicate open connection from driver to valve (ie. bad cable) T8 Volt Internal power inspect T9 MUTE Not used T10 M-EN Manual/Auto mode select T11 V-EN Valves enable Input Global valve enable signal. Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 T19 XVG PEEP valve drive signal - drives settings. T19 ADJ Power 4.8V 4.8V T21 P24V Power 24V Z4V	T6	Fm_fl	Flow of flowmeter	0.25-0.51V (flowmeter off)
TO MEN Manual/Auto mode select T11 VEN Valves enable Input Global valve enable signal. Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 T19 XVG PEEP valve drive signal - drives settings. T19 ADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	17	AD-Exhale	PEEP valve, current feedback	setting and vent mode. No activity may indicate open connection from driver to
T10 M-EN Manual/Auto mode select T11 V-EN Valves enable Input Global valve enable signal. Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 Level depends on machine settings. T19 XVG PEEP valve drive signal - drives Level depends on PEEP setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T8	Volt	Internal power inspect	
T11 V-EN Valves enable Input Global valve enable signal. Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 T19 XVG PEEP valve drive signal - drives tettings. T19 ADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T9	MUTE	Not used	
Must be active for valves to operate. T12 EX-DA Exhale DA output T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 settings. T19 XVG PEEP valve drive signal - drives Level depends on PEEP setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T10	M-EN	Manual/Auto mode select	
T13 In-DA Inhale DA output T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 T19 XVG PEEP valve drive signal - drives Level depends on PEEP setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T11	V-EN	Valves enable Input	Must be active for valves to
T14 GS_ST gas supply status, high active T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 settings. T19 XVG PEEP valve drive signal - drives Level depends on PEEP setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T12	EX-DA	Exhale DA output	
T15 XVI unamplified version of T7 T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 settings. T19 XVG PEEP valve drive signal - drives Level depends on PEEP setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T13	In-DA	Inhale DA output	
T16 IVI unamplified version of T28 T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 Level depends on machine settings. T19 XVG PEEP valve drive signal - drives Level depends on PEEP setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T14	GS_ST	gas supply status, high active	
T17 MVI Manual-Valve current feedback T18 IVG Proportional valve drive signal, drives T16 and T28 settings. T19 XVG PEEP valve drive signal - drives Level depends on PEEP T15 and T7 setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T15	XVI	unamplified version of T7	
T18 IVG Proportional valve drive signal, drives T16 and T28 Level depends on machine settings. T19 XVG PEEP valve drive signal - drives Level depends on PEEP setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T16	IVI	unamplified version of T28	
drives T16 and T28 settings. T19 XVG PEEP valve drive signal - drives T15 and T7 Level depends on PEEP setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T17	MVI	Manual-Valve current feedback	
T15 and T7 setting and vend mode. T20 PADJ Power 4.8V 4.8V T21 P24V Power 24V 24V	T18	IVG		
T21 P24V Power 24V 24V	T19	XVG		
	T20	PADJ	Power 4.8V	4.8V
T22 P12V Power 12V 12V	T21	P24V	Power 24V	24V
	T22	P12V	Power 12V	12V

Ventilator Control and Drive Theory of Operation

Test Point Definition

DESIGNATOR	NAME	FUNCTION	RANGE
T23	-10V	Negative Voltage -10V	-10V
T24	A12V	Analogue 12V	12V
T25	VCC	Power 5V	5V
T26	5VAUX	5V Auxiliary	5V
T27	10V	Analogue +10V	+10V
T28	AD-Inhale	Inhale-STATE feedback	No activity may indicate open connection from driver to valve (ie. bad cable)
T29	AGND	Analogue Ground	
T30	GND	Ground	
T31	PAW	Pressure inside air way	0.45-0.55 (open to atmosphere)
T32	Manual	Manual/Auto Valve feedback	

1 - 18 0070-10-0683 AS3000™ Service Manual

Theory of Operation Ventilator Control and Drive

1.5.1.2 Drive Gas Pressure Sensor Board

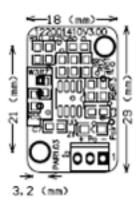


FIGURE 1-10 Drive Gas Pressure Sensor Board, Top View

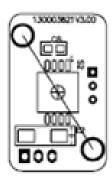


FIGURE 1-11 Drive Gas Pressure Sensor Board, Bottom View

Pair Board

Pair, J1

PIN	NAME	FUNCTION	
1.	AGND	Analog Ground	
2.	Pair	Pressure of air	
3.	NC	No connection	•
4.	AR10V	10V	
5.	NC	No connection	

Ventilator Control and Drive Theory of Operation

1.5.1.3 PAW Pressure Sensor Board

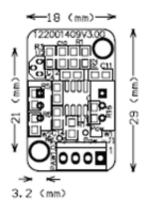


FIGURE 1-12 Paw Pressure Sensor Board, Top View

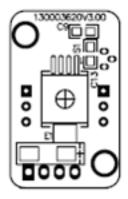


FIGURE 1-13 Paw Pressure Sensor Board, Bottom View

Paw Board

Paw, J2

PIN	NAME	FUNCTION
1.	AGND	Analog Ground
2.	Paw	Pressure inside airway
3.	AR5V	5V
4.	NC	No connection
5.	NC	No connection

1 - 20 0070-10-0683 A\$3000™ Service Manual

Theory of Operation Ventilator Control and Drive

1.5.1.4 Breathing System Heater

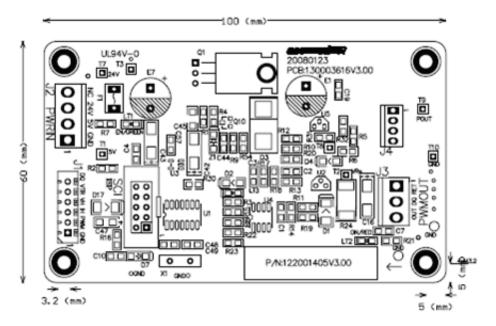


FIGURE 1-14 Breathing System Heater Board, Top View

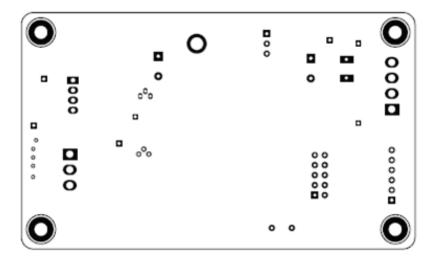


FIGURE 1-15 Breathing System Heater Board, Bottom View

J2

PIN	NAME	FUNCTION
2.	GND	Power Ground
3.	5V	Controller Power, Output Enable
4.	24V	Heater Power Supply
5.	NC	No Connection

Ventilator Control and Drive Theory of Operation

J3

PIN	NAME	FUNCTION
1.	RET	Heater Power Ground
2.	DQ	Sensor signal
3.	24V	Heater Output

Test point definition

DESIGNATOR	NAME	FUNCTION
T10	GND	Power Ground
T1	5V	Controller Power
T7	24V	Heater Power input
T9	POUT	Heater Output

Indicating lamp definition

DESIGNATOR	STATUS	FUNCTION
LT2	RED	Heater Output available
LT3	GREEN	Heater Ready

1 - 22 0070-10-0683 AS3000™ Service Manual

Theory of Operation Ventilator Control and Drive

1.5.1.5 Sensor Board

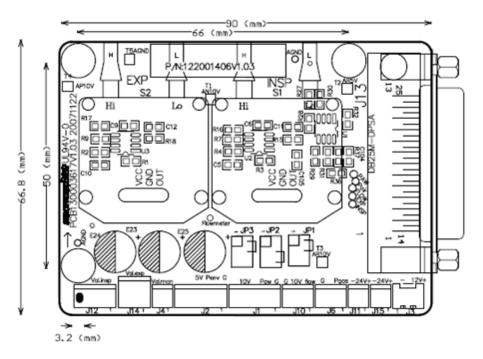


FIGURE 1-16 Sensor Board, Top View

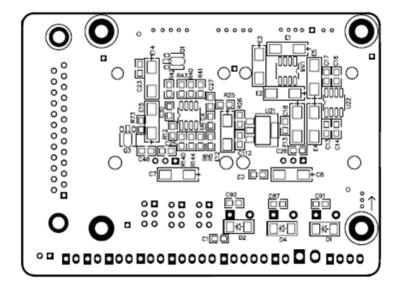


FIGURE 1-17 Sensor Board, Bottom View

Ventilator Control and Drive Theory of Operation

Sensor Board Pair, J1

PIN	NAME	FUNCTION	
1.	AGND	Analog Ground	
2.	Pair	Pressure of air	
3.	NC	No connection	
4.	AR10V	10V	
5.	NC	No connection	

PAW, J2

PIN	NAME	FUNCTION
1.	AGND	Analog Ground
2.	Paw	Pressure inside airway
3.	AR5V	5V
4.	NC	No connection
5.	NC	No connection

Work Light Power, J11

PIN	NAME	FUNCTION	
1.	24V	Power 24V	
2.	GND	Power Ground	

Backlight Power, J15

PIN	NAME	FUNCTION
1.	24V	Power 24V
2.	GND	Power Ground

Switch of Gas Supply, J6

PIN	NAME	FUNCTION	
1.	GND	Ground	
2.	NC	No connection	
3.	Pgas	Switch input	

Expire Valve, J14

PIN	NAME	FUNCTION
1.	5V	5V
2.	Valexp Expire	Valve Drive

Theory of Operation Ventilator Control and Drive

Inspire Valve, J12

PIN	NAME	FUNCTION
1 - 2	24V	24V
3 - 4	Valexp inspire	Valve Drive

Man/Auto Valve, J14

PIN	NAME	FUNCTION
1.	24V	24V
2.	Valman	Manual/Auto Valve Drive

Signals and Power of Sensor Board, J13

PIN	NAME	FUNCTION
1.	A+12V	Analogue +12V
2.	FL_INS	Import flow
3.	FL_EXP	Export flow
4.	FM_FL	Flowmeter flow
5.	Pair	Pressure of air
6.	Paw	Pressure inside air way
7.	Pgas	Pressure gas supply status
8.	GND	Ground
9.	AGND	Analog Ground
10.	AGND	Analog Ground
11.	P24V	Power 24V
12.	P24V	Power 24V
13.	P24V	Power 24V
14.	P12V	Power 12V
15.	P12V	Power 12
16.	P5V	Power 5V
17.	P5V	Power 5V
18.	Inhale	Inspire Valve
19.	Man	MANUAL/AUTO Valve
20.	Exhale	Expire Valve
21.	Exhale	Expire Valve
22.	AGND	Analog Ground
23.	AGND	Analog Ground
24.	AGND	Analog Ground
25.	AGND	Analog Ground

Ventilator Control and Drive Theory of Operation

1.5.2 Power Management

Power management is located behind the Rear Panel Assembly. This module serves as the voltage supply for the ventilator control and drive BDU, the flowmeter backlight, the work light, the Breathing System Heater, and the charging/discharging control for the battery.

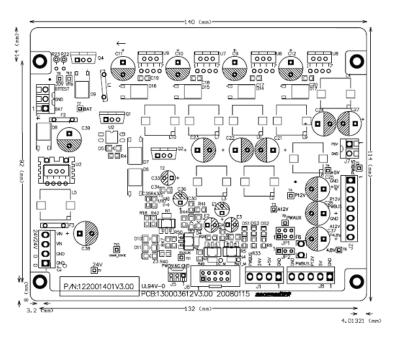


FIGURE 1-18 Power Board, Top View

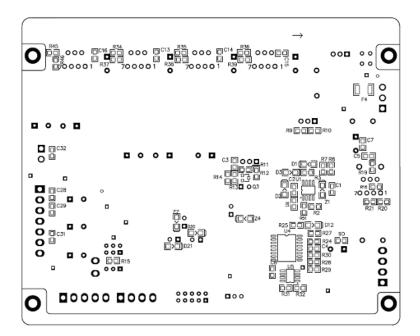


FIGURE 1-19 Power Board, Bottom View

Theory of Operation Ventilator Control and Drive

Power Board Battery input, J4

PIN	NAME	FUNCTION	
1.	BAT	Battery Input +	
2.	5V	Power Ground	
3.	BATTEST	Battery test input	

DC24V Power input, J3

PIN	NAME	FUNCTION
4.	GND	Power Ground
5.	GND	Power Ground
6.	24V	Power input
7.	24V	Power input

DC Power output, J2

PIN	NAME	FUNCTION	
1.	GND	Power Ground	
2.	+5V	Controller Logic Power	
3.	P12V	Power 12V	
4.	PWBUS	Power Bus 24V	
5.	GND	Analog Ground	
6.	A12V	Analog 12V	
7.	5V/4.8V	Power 5V/4.8V	

Heater Power, J1

PIN	NAME	FUNCTION
6.	GND	Power Ground
7.	5V	Controller Power, Output Enable
8.	24V	Heater Power Supply
9.	PBUS	Power Bus, No Connection

Power Control, J2

PIN	NAME	FUNCTION
1.	GND	Ground
2.	/PWON	Power On Enable, Low active
3.	PWEN	Power On Enable, High active
4.	5VAUX	5V Auxiliary
5.	DC_M	AC/DC Monitor signal
6.	PWBUS	Power bus
7.	BAT_M	Battery Monitor signal

Ventilator Control and Drive Theory of Operation

Power Control, J2 (Continued)

PIN	NAME	FUNCTION
8.	APE	Auxiliary Power Enable
9.	CHAR_SIGNAL	Charge Status, No connection
10.	/MUTE	Mute, No connection

Power Switch, J5

PIN	NAME	FUNCTION
1.	GND	Ground
2.	NC	No Connection
3.	PWON	Power On Enable, Low active

Test Point definitions

DESIGNATOR	NAME	FUNCTION
T1	24V	24V DC Input
T2	PWBUS	Power Bus
T3	A12V	Analogue 12V
T4	P12V	Power 12V
T5	+5V	Logic Power 5V
T6	5V/4.8V	Power 5V/4.8V
T7	BAT+	Battery Input +
T8	30V	30V for charger
T9	PWAUX	Power Auxiliary
T10	CHARGE	Charge Status
T11	5VAUX	5V Auxiliary
T12	VRs	Charger Feedback

Led Designation

DESIGNATOR	LED COLOR	STATUS FUNCTION
DS1	GREEN	24V DC available
DS2	GREEN	Power Bus On
DS3	GREEN	Charge

1.5.3 Battery

The sealed lead-acid battery is maintenance free, and has a maximum recharge time of 8 hours when fully discharged. The run time is at least 45 minutes with a fully charged battery. To prevent unintended loss of battery operation, the recommended replacement period is every 3 years.

1.5.4 Power Supply

The power supply provides power to the machine and relevant controls.

1.6 Anesthesia System Components

1.6.1 Auxiliary Outlets

The **AS3000** has four auxiliary outlets (120 VAC, 60 Hz, 2A maximum each). There are two 2A fuses for each outlet.

1.6.2 Absorber Heater Wire Board

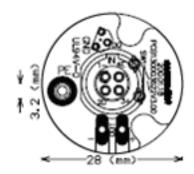


FIGURE 1-20 Absorber Heater Wire Board, Top View

FIGURE 1-21 Absorber Heater Wire Board, Bottom View

1.6.3 Work Light Board

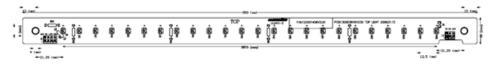


FIGURE 1-22 Work Light Board, Top View

FIGURE 1-23 Work Light Board, Bottom View

Work light Power, J11

PIN	NAME	FUNCTION
1.	24V	Power
2.	NC	No Connection
3.	GND	Power Ground

Work light switch, J11

PIN	NAME	FUNCTION
1.	24V	Power 24V
2.	NC	No Connection
3.	LOW	Low dim
4.	HIGH	High dim

1 - 30 0070-10-0683 AS3000™ Service Manual

Theory of Operation Ventilator UI

1.7 Ventilator UI

1.7.1 Keyboard Board

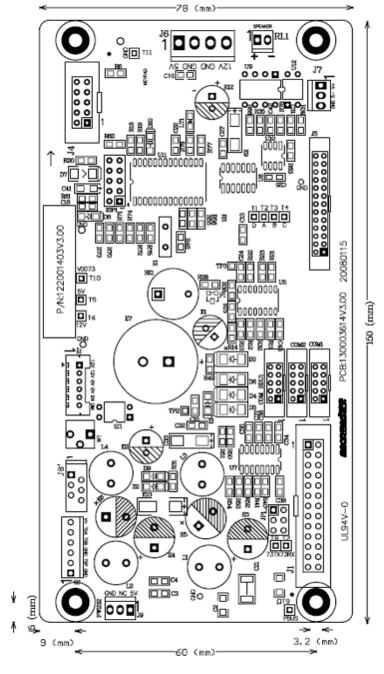


FIGURE 1-24 Keyboard Board, Top View

Ventilator UI

Theory of Operation

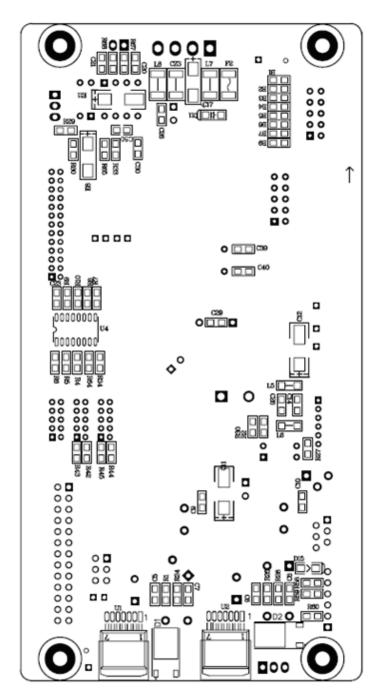


FIGURE 1-25 Keyboard Board, Bottom View

Theory of Operation Ventilator UI

Keyboard Signals and Power of Keyboard, J1

PIN	NAME	FUNCTION
1.	ENPW	Power Enable, High active
2.	GND	Ground
3.	/PWON /	Power on Enable, Low active
4.	DC24V	DC24V monitor
5.	5VAUX	5V Auxiliary
6.	BATV+	Battery monitor
7.	APE	Auxiliary Power Enable
8.	/MUTE	No connection
9.	GND	Ground
10.	GND	Ground
11.	TTLRX	TTL Receive
12.	TTLTX	TTL Transmit
13.	232ARX	RS232A Receive
14.	232ATX	RS232A Transmit
15.	232BRX	RS232B Receive
16.	232BTX	RS232B Transmit
1 <i>7</i> .	GND	Ground
18.	GND	Ground
19.	PWBUS	PowerBus
20.	PWBUS	PowerBus
21.	PWBUS	PowerBus
22.	PWBUS	PowerBus
23.	PWBUS	PowerBus
24.	GND	Ground
25.	GND	Ground

PC104 Power output, J6

PIN	NAME	FUNCTION
1.	5V	Controller Logic Power
2.	GND	Power Ground
3.	GND	Power Ground
4.	12V Power	12V, No connection

Backlight Power, J2

PIN	NAME	FUNCTION	
1.	12V	Power output	_
2.	12V	Power output	
3.	GND	Power Ground	
4.	GND	Power Ground	

Ventilator UI

Theory of Operation

Backlight Power, J2 (Continued)

PIN	NAME	FUNCTION	
5.	ON/OFF	Backlight ENABLE	
6.	DIM	Contrast adjust	

Power of 232 Isolator, J9

PIN	NAME	FUNCTION	
1.	5V	Power 5V	
2.	NC	No connection	,
3.	GND	Ground	,

COM1/2

PIN	NAME	FUNCTION
2	RXD	232RXD TO PC104 INPUT
3	TXD	232TXD TO PC104 OUTPUT
5	GND	Ground

Test Point Definition

DESIGNATOR	NAME	FUNCTION
T5	+5V	Logic Power 5V
T6	P12V	Power 12V
T9	PWBUS	Power Bus

LED Designation

DESIGNATOR	STATUS	FUNCTION
LT 1	GREEN/BLINK	Keyboard ready

1.7.2 Display

The display is a 10.4 inch TFT LCD

Theory of Operation Ventilator UI

1.7.3 Communication Interface / RS232 Isolate Board

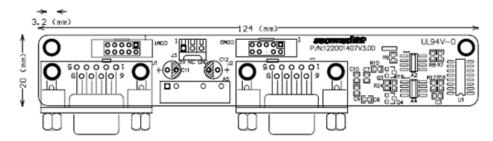


FIGURE 1-26 RS232 Isolate Board, Top View

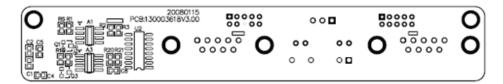


FIGURE 1-27 RS232 Isolate Board, Bottom View

RS232 Isolator

Power, J3

Pin	Name	Function
4.	5V	Power 5V
5.	NC	No connection
6.	GND	Ground

COM1/2

Pin	Name	Function
2	RXD	232RXD TO PC INPUT
3	TXD	232TXD TO PC OUTPUT
5	GND	Ground

COM1A/B

Pin	Name	Function
2	TXD	232TXD TO PC OUTPUT
3	RXD	232RXD TO PC INPUT
5	GND	Ground

1.7.4 Fuses

The **AS3000** has 10 fuses on the back panel of the unit. There are two 2A fuses for each of the four outlets and two 10A fuses for the line cord.

1.8 Ventilator Pneumatic - O₂ Drive Gas

1.8.1 Ventilator pneumatic drive

Oxygen is the driving gas for the ventilator. In addition to the flowmeter block, a high pressure regulator reduces the supply pressure to 25.4 psi (175 kPa). This pressure represents the drive gas for the ventilator.

The drive pressure regulator is placed ahead of the proportional valve that generates the driving gas flow during the inspiratory phase. This flow fills the bellows dome that surrounds the bellows.

1.8.2 Drive Pressure-High pressure regulator

The drive pressure regulator stabilizes the supply pressure provided to the proportional valve. The flow generated by the proportional valve is therefore independent of pressure variations at the supply.

Setting the drive pressure regulator at 25.4 psi (175 kPa) allows for a maximum inspiratory flow of 70 L/min at the ventilator.

1.8.3 Gas Box Assembly

The driving module consists of the proportional valve and a solenoid valve for the vent mode switch. The proportional valve pressure regulator, and generates a driving gas flow of 0 - 70 L/min in relation to the control voltage of the proportional valve of 0 - 5VDC.

The control voltage of the proportional valve, required for the pre-selected parameter settings, is generated by the BDU board. The driving gas flow $Q_{\text{drive gas}}$ is in the following relationship with the tidal volume:

$$Q_{drive gas} = V_T/T$$

with: Q_{drive gas} = driving gas flow

 V_T = generated tidal volume

T = time

1.8.4 Tube color coding

All the pneumatic tubes used in the **A53000** are color coded for use in the United States only.

GAS	US STANDARD
O ₂	Green
N ₂ O	Blue
AIR	Yellow

Theory of Operation The Breathing System

1.9 The Breathing System

1.9.1 CMV mode, inspiration

Tidal volume (T Vol.) compensates for variations in gas flow. This is to ensure that the set tidal volume is delivered to the patient.

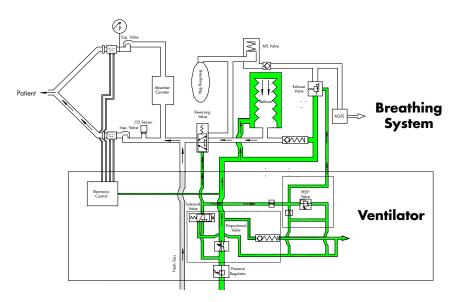


FIGURE 1-28 Breathing System Pneumatics, CMV Mode, Inspiration

1.9.2 CMV mode, expiration

As the patient exhales tidal volume into the expiratory limb, fresh gas enters the bellows. Fresh gas mixes with exhaled gas after the Absorber removes CO₂. Excess fresh gas passes through the exhaust valve to the AGSS

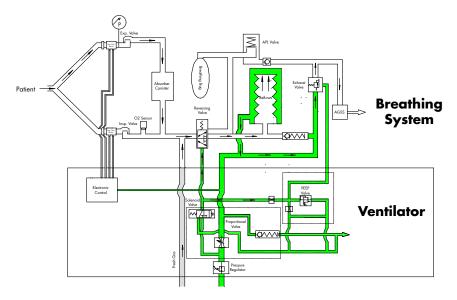


FIGURE 1-29 Breathing System Pneumatics, CMV Mode, Expiration

The Breathing System Theory of Operation

1.9.3 Manual mode, inspiration

As the breathing bag is compressed, the gas is directed to the patient. Pressures exceeding the set value of the APL Valve will pass through the APL Valve the AGSS.

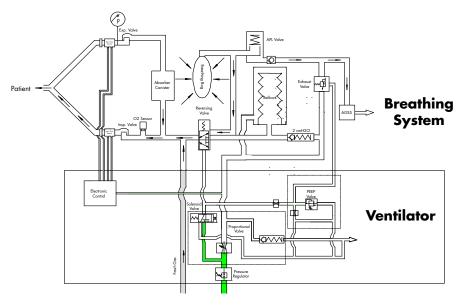


FIGURE 1-30 Breathing System Pneumatics, Manual Mode, Inspiration

1.9.4 Manual mode, expiration

As the patient exhales tidal volume into the expiratory limb, fresh gas enters the Breathing System. Fresh gas mixes with exhaled gas after the Absorber removes CO₂. Excess fresh gas passes through the exhaust valve to the AGSS

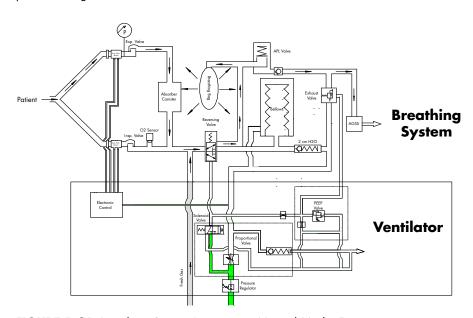


FIGURE 1-31 Breathing System Pneumatics, Manual Mode, Expiration

Theory of Operation The Breathing System

1.9.5 Pneumatic PEEP

The PEEP valve regulates the pressure at which the exhaust valve opens, therefore the exhaust valve opens only when the pressure exceeds the set PEEP pressure.

1.9.6 Ventilator in Standby

When the **A53000** is in the standby mode, monitoring will be inactive, The patient should not be ventilated when the system is in standby mode.

1.9.7 Breathing System Components

1.9.7.1 Ventilation Bellows System

The ventilator's driving system is a flow generator. Driving gas fills the bellows dome to compress the bellows. The breathing gas is pressed out of the bellows into the patient breathing circuit. The bellows is refilled with fresh gas and the expired gas from the patient.

1.9.7.2 Manual Breathing Bag

In manual mode, this device acts as a normal breathing bag, enabling the user to ventilate the patient manually. In mechanical ventilation mode, this bag is cut off from the breathing circuit by the reversing valve.

1.9.7.3 CO₂ Absorber

The soda lime inside the absorber retains the carbon dioxide from the exhaled gas. The AS3000 accommodates standard sized Pre-Paks or loose-fill CO_2 absorbent.

1.9.7.4 Inspiratory and Expiratory Valves

To ensure correct gas flow direction to and from the patient, one-way-valves are integrated in the inspiratory and expiratory limb of the Breathing System.

1.9.7.5 APL (Airway Pressure Limiting) valve

In manual mode, the APL Valve acts as a normal spring loaded pressure relief valve, limiting the maximum pressure in the Breathing System.

The Breathing System

Theory of Operation

This page intentionally left blank.

1 - 40 0070-10-0683 AS3000™ Service Manual

Installation Guide

2.1 Delivery of The New Anesthesia Machine

The following customer supplied material must be present prior to installation. Missing equipment can result in delays, incomplete installations and/or extra visits.

- Compatible emergency O₂, N₂O, and AIR cylinders
- Agent vaporizers and key fillers, if not purchased with the AS3000
- Liquid agent medication
- CO₂ absorbent Pre-Paks or loose fill
- Active O2, N2O, and AIR, lines at 50 psi
- Drop down hoses for ceiling mounted medical gas utilities, compatible with quickdisconnect hoses if not purchased with the AS3000
- Activated medical gases (O₂, N₂O, AIR, VAC, and EVAC)

Assembly Installation Guide

2.2 Assembly

NOTE:

The AS3000 Breathing System Block is matched to the AS3000 it is attached to by calibration and installation. After removing the Breathing System Block from the Mounting Arm of the AS3000, assure that the Breathing System Block is returned to the same AS3000 that it came from originally.

2.2.1 Unpacking

- 1. Inspect the two boxes for any damage, check the tip watches, and report any damage or sign of tipping to the dispatcher.
- 2. Ensure the serial numbers on both carton labels match prior to assembling the system.
- **3.** Remove the shipping straps and caps from the 2 boxes.
- 4. Remove the foam from inside the top of the box.
- **5.** Remove the Corrugated box from around **AS3000**.
- 6. Remove the bag and shrink wrap from around AS3000.
- 7. Remove the foam from AS3000 casters.

2.2.2 Breathing System and Breathing System Accessories

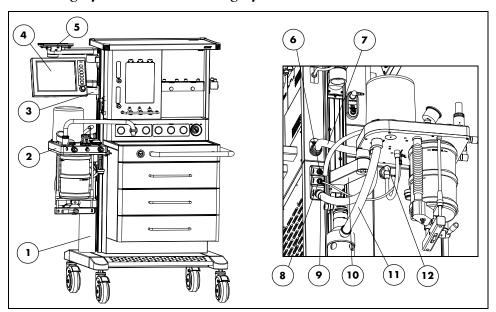


FIGURE 2-1 The AS3000 and accessories

- 1. AGSS
- 3. User Interface Mounting Arm
- 5. Patient Monitor Mounting Arm
- 7. Pneumatic Hose Assembly
- 9. Drive Gas
- 11. AGSS Transfer Hose

- 2. Breathing System
- 4. User Interface
- 6. O₂ Cable
- 8. Heater Cable
- 10. Breathing System Mounting Arm
- 12. CGO Port

Installation Guide Assembly

2.2.2.1 Attaching the Mounting Arms and User Interface

(see FIGURE 2-1)

 Remove the mounting arms from small box and install them onto the AS3000 using a 3 mm allen wrench.

- Remove the keys from the parts box, and unlock the AS3000 drawers and put parts box into top drawer.
- Remove the AGSS and Breathing System mount from the foam packaging, and install them onto the AS3000.
- 4. Remove the User Interface and slide it onto the User Interface mounting arm.
- 5. Apply Loctite 243 to the User Interface cable jackscrews and jackposts. Then, connect the User Interface cable to the User Interface. Ensure the jackscrews are securely tightened.

2.2.2.2 Breathing System Connections

(see FIGURE 2-1)

- 1. Remove the foam and bag from around the Breathing System.
- Ensure that the serial number tag attached to the bag arm matches the serial number found on the package carton.
- Install the Breathing System onto the arm on the left side of the AS3000 by attaching it to the installed bracket.
- 4. Attach the Drive Gas Hose to the bottom port of the Breathing System
- 5. Attach the Heater cable into the port located on the bottom of the Breathing System
- **6.** Install the O₂ Cell to the O₂ Interface
- Attach the O₂ cell to the O₂ cable and insert the cell into its designated port on the Breathing System.
- **8.** Attach the Pneumatic Hose Assembly to the designated port on the rear of the Breathing System.
- Attach the AGSS Transfer Hose to its designated port on the bottom of the Breathing System.

2.2.2.3 Anesthesia System Connections

(see FIGURE 2-1)

1. Attach the Fresh Gas Hose of the Breathing System to the CGO port on the system.

Assembly Installation Guide

- 2. Attach the Drive Gas Hose to the designated port on the Breathing System Interface.
- 3. Attach the Heater Cable to the designated port on the Breathing System Interface.
- 4. Attach the O₂ Cable to the designated port on the Breathing System Interface.
- Attach the Pneumatic Hose Assembly to the designated connector labeled Breathing System Pneumatics.
- 6. Attach the AGSS Transfer Hose.

2.2.3 Tank Wrench and Pre-operation Checklist

- 1. Mount the tank wrench on the rear of the **A53000** so that it can be used to open or close each cylinder, without disconnecting it from the machine.
- 2. Attach the pre-operation checklist to a location on the **AS3000** where the operator can access it.

2.2.4 Patient Suction Regulator and Arm

- 1. Remove the Patient Suction Regulator and mounting arm from its packaging.
- Attach the mounting arm to the customers desired channel. It mounts to either side channel.
- 3. Tighten the locking screw.
- 4. Thread the patient suction regulator into its mating port on the mounting arm.
- 5. Attach a barbed fitting adapter to the suction regulator's VAC fitting as necessary to attach a hospital grade suction hose from the regulator output to the suction canister.

2.2.5 Suction Canister Bracket

- 1. Remove the suction canister bracket from its packaging.
- 2. Attach the bracket to the right lower rail and secure.

2.2.6 Utility Tray, Monitor Mounting Arm with Utility Hook(s)

- 1. Remove the items from their packing material.
- 2. Slide the utility tray into the desired channel.
- **3.** Tighten the locking screw.
- 4. Remove the plastic cap from under the mounting arm's swivel head.
- Mount the utility hook(s) under the swivel head of the arm using the screws and tool provided with the hook.
- **6.** Slide the mounting arm into the desired channel. Allow enough room for mounting monitors at the desired height.
- 7. Tighten the locking screw.

2.2.7 Vaporizers

1. Prior to mounting, set the vaporizer to the **T** position. (Does not apply for all vaporizers.)

Installation Guide Assembly

2. Discard the washers that came with the vaporizer. Use only approved O-rings that come mounted on the vaporizer mounting ports of the **AS3000**.

- **3.** Mount a mechanical vaporizer to either side of the **AS3000** vaporizer mount by placing the vaporizer on the ports and locking down the lever.
- Mount an electronic vaporizer in the same manner. Follow any installation instructions that come with the specific vaporizer.

2.2.8 High Pressure Hoses

- 1. Remove the hoses from their packing material.
- 2. Attach each hose to its mating connector by hand. Do not use any tools.
- **3.** Use extreme care while attaching the EVAC hose to the waste gas scavenger (WGS); as it is extremely delicate.
- **4.** Attach an EVAC hose to a VAC source connection only if an EVAC source connection is not available.

2.2.9 Emergency Cylinder(s)

- 1. Remove the cover from a new O_2 , N_2O , and AIR cylinder.
- 2. Mount one at a time onto the rear of the anesthesia machine.
- Discard the cylinder's tank washer. Always use the approved tank washer provided with the AS3000.
- 4. Open the bail of each yoke and mount the cylinder over the tank washer.
- **5.** Ensure the O_2 cylinder mates to the O_2 Pin Index Safety System (PISS) connection on the O_2 yoke. Close the yoke bail and use the hand-screw to tighten the cylinder to the yoke port.
- **6.** Open and close the cylinder valve and observe that the cylinder gauge on the anesthesia machine rises to the colored range.
- **7.** Ensure that the N_2O cylinder mates to the N_2O PISS connection on the N_2O yoke. Close the yoke bail and use the hand-screw to tighten the cylinder to the yoke port.
- **8.** Open and close the cylinder valve and observe that the cylinder gauge on the anesthesia machine rises to the colored range.
- **9.** Ensure that the AIR cylinder mates to the AIR PISS connection on the AIR yoke. Close the yoke bail and use the hand-screw to tighten the cylinder to the yoke port.
- **10.** Open and close the cylinder valve and observe the cylinder gauge on the anesthesia machine rise to the colored range.

2.2.10 Breathing Circuit, CO₂ Absorbent, and Liquid Vaporizer Agent

- Attach a breathing circuit to the inspiratory and expiratory ports as detailed in the directions for use. Attach the breathing bag and any other respiratory accessories as described.
- 2. Insert the Pre-Paks one on top of the other with the wider side facing up on both Pre-Paks. (alternatively the absorber canisters may be filled with loose fill absorbent.)
- **3.** Install the absorber canister with a quarter turn of the lever at the bottom the absorber assembly, this ensures a tight seal.

Assembly Installation Guide

2.2.11 Monitoring Products - Mounting and Electrical Connection

 Any monitoring system compatible with the GCX mounting system's swivel head may be mounted to the AS3000's arm.

NOTE: Use of other monitors and mounting hardware is the responsibility of the installer.

- Always make full use of all mounting fasteners and strap capturing devices when mounting monitors to the AS3000.
- After mounting a monitor to the AS3000, connect it to one of the AC outlets located on the rear of the AS3000.
 - **a.** Turn on each monitor one at a time and ensure that the circuit breaker holds without tripping.
 - **b.** Dress each line cord neatly along the side of the anesthesia machine so that it can not be easily pulled or extend far from the main chassis.

2.2.12 Agent Monitor Waste Gas Scavenging

- Respiratory gas monitoring products have an exhaust port from which waste gas expels.
 The exhaust port on the gas monitor must be connected to the open barbed fitting on the waste gas scavenger.
- 2. Ensure that a tight connecting fitting is attached to the rear of the gas monitor. Ensure that the other end of the same tube has a tight fitting connection attached to the waste gas scavenger's (WGS) barbed fitting.
- **3.** Dress the exhaust tubing neatly along the side of the anesthesia machine so that it can not be easily pulled or extend far from the main chassis.

2.2.13 Oxygen Sensor Calibration

NOTE: See "Periodic Maintenance Schedule of Service Activities" on page 6-2 for when to calibrate the oxygen sensor.

1. Preparing the unit

- **a.** Allow the breathing system to warm up and reach thermal equilibrium (approximately 30-60 minutes).
- **b.** In Standby mode, press the **MENU** button. The menu screen will appear.
- c. Select **Service**, then input the password **2010** to enter the Service screen.
- d. Select Calibration to enter the Calibration screen.
- e. Select Oxygen Sensor to enter the Oxygen Sensor Calibration screen.

2. Calibration

NOTE: Do not shake the O₂ sensor during calibration.

NOTE: During calibration, keep the O₂ sensor in a vertical position, connector side up, and bottom side exposed to room air; keep the O₂ sensor near the heated block to minimize the temperature difference from within the heated block.

Installation Guide Assembly

NOTE: If the system is going to be used during the calibration, insert the O₂ cell plug into the port from which the oxygen sensor was removed using a push and turn motion.

- **a.** Select **21%** to enter the 21% oxygen concentration calibration screen.
- **b.** Remove the oxygen sensor from the Breathing System and expose it to room air for at least 3 minutes.
- c. Flush the O₂ sensor with air from the auxiliary output for 5-10 seconds to ensure that no O₂ bubbles are trapped in the sensor.
- **d.** Select **Next** to start 21% oxygen concentration calibration.

NOTE: The O₂ sensor voltage is displayed during the calibration. This is the amplified O₂ cell voltage at the A/D converter for the oxygen sensor. The O₂ sensor voltage is not displayed for UI versions 2.24 and lower.

e. When calibration is successfully completed, install the oxygen sensor into the Breathing System.

NOTE: The oxygen sensor must be installed in the Breathing
System for 10 minutes prior to 100% oxygen concentration
calibration to adjust to the temperature of the system.

- f. Press the O₂ Flush button for 5-10 seconds to clear out any non-O₂ gases from the system.
- g. Expose the oxygen sensor to 100% pure oxygen (5 L/min) for at least 3 minutes.
- h. Select 100% to enter the 100% oxygen concentration calibration screen.
- i. Select **Next** to start 100% oxygen concentration calibration.

Installation Checkout Procedure Installation Guide

2.3 Installation Checkout Procedure

Complete each step to verify the functionality of the AS3000 prior to clinical use.

Also, perform this checkout after installation, reinstallation, servicing or after any periodic maintenance activity. This checklist does not replace periodic maintenance actions that must be performed to maintain peak performance.

1. Verify that all components are present, and inspect for physical damage.

- a. Ensure that the Operating Instructions is present.
- **b.** Verify unit is free from cosmetic defects. Plastics, labeling and display window are free from inclusions, pitting, bulges, sink marks, nicks, scratches, gouges dents, discolorations, etc. Verify all major hardware is fastened properly.
- c. Verify that there are Tank Washers for each of the external cylinder yokes.
- **d.** Verify that each vaporizer's locking spring is intact on the manifold by looking through the opening and checking for the visible wire spring.
- e. Verify that each connector of the vaporizer mount has an O-ring.
- f. Verify that breathing circuit consumables and CO₂ absorbent are present.
- **g.** Inspect the O_2 , N_2O , AIR, VAC, and EVAC supply hoses for damages.
- **h.** Turn the flow control knobs for O₂, AIR and N₂O and verify that the floats rise and spin as the flow is increased and fall freely as the flow is decreased.
- i. inspect the AC line cord for fraying and damages.

2. Verify that the laminated Preoperative Checkout card is attached.

3. Verify that the tank wrench is attached.

4. Verify that the waste scavenger flow rate is set and that the hose is intact, connected and dry.

- **a.** Attach the waste gas hose from the waste gas port on the Breathing System to one of the waste gas ports on the AGSS.
- **b.** Attach the EVAC hose from the waste gas assembly DISS (Diameter Index Safety System) fitting to a source of vacuum.
- c. Adjust the position of the float to be between the Min and Max lines by turning its flow adjustment knob (counterclockwise increases flow, clockwise decreases flow).

2 - 8 0070-10-0683 AS3000™ Service Manual

Installation Guide Installation Checkout Procedure

5. Check N2O, O2 and AIR Lines for leaks.

- a. Remove the cylinders from the AS3000.
- **b.** Connect the O₂, AIR and N₂O hoses to the gas line inlets.

NOTE: If a specific gas source is not available, skip the corresponding leak test.

- c. Verify O₂, AIR and N₂O Line Pressure gauges read the corresponding line pressure.
- d. Set the AIR flow controller to minimum.
- **e.** Pinch to occlude the O_2 , AIR and N_2O hoses.
- f. Disconnect each hose from its line pressure source.
- g. Verify that the pressures do not drop more than 2 psi over a time period of 20 seconds.

6. Verify that all available line and cylinder gauges are operational.

- **a.** Connect the O_2 supply hose and remove the AIR and N_2O hoses.
- **b.** Verify the O₂ Line Pressure gauge shows the reading of the line pressure.
- **c.** Connect the AIR supply hose and remove the O_2 and N_2O hoses.
- **d.** Verify that the AIR Line Pressure gauges show the reading of the line pressure.
- **e.** Connect the O_2 and N_2O hoses and remove the AIR hose.
- **f.** Verify that the N₂O and O₂ Line Pressure gauge shows the reading of the line pressure.
- **g.** Attach the cylinders to the **AS3000**'s yokes (O_2 and N_2O or AIR). In the case where multiple cylinders of the same gas are required, attach one at a time.
- **h.** Open all attached cylinders including the O₂ cylinder. If a cylinders pressure is less than 500 psi, replace the respective cylinder.
- Verify that the cylinder pressure gauges register a pressure for each type of gas attached.

7. Test O₂ Flush operation with only O₂ connected.

- **a.** Connect the O_2 supply hose and remove the AIR and N_2O hoses.
- **b.** Attach a calibrated flow meter to the Common Gas Outlet.
- **c.** Push the O_2 Flush button and verify a reading between 35 L/min and 50 L/min at the flow meter.

NOTE: O_2 flow may be greater than 50 L/min at higher altitudes.

d. Reconnect the O_2 , AIR and N_2O hoses.

8. Test the O₂:N₂O ratio system (applicable to -01 units only).

- a. Set all flow control knobs to minimum.
- **b.** Increase the flow of N_2O until the O_2 reaches 1 L/min
- c. Verify that the N₂O flow is not higher than 3.7 L/min.
- d. Return flow control knobs to minimum.

Installation Checkout Procedure Installation Guide

9. Test the O₂:N₂O ratio system (applicable to -02 units only).

- a. Set all flow control knobs to minimum.
- **b.** Set the flow of O_2 to 1 L/min.
- c. Open the N2O flow knob and verify that the N2O flow will not increase higher than 3.7 L/min.
- **d.** Return flow control knobs to minimum.

10. Perform System Test.

- a. Power ON the AS3000.
- **b.** Wait until the System Self Test is complete

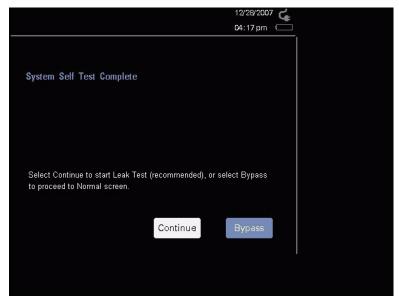


FIGURE 2-2 Startup Self Test

c. Select Continue to prompt to the Safety Valve test

2 - 10 0070-10-0683 AS3000™ Service Manual

Installation Guide Installation Checkout Procedure

11. Perform Leak/Safety Valve Test

a. Follow the on-screen instructions.

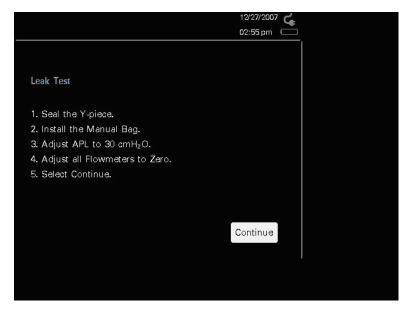


FIGURE 2-3 Leak Test Setup

b. Select **Continue** to start the test.

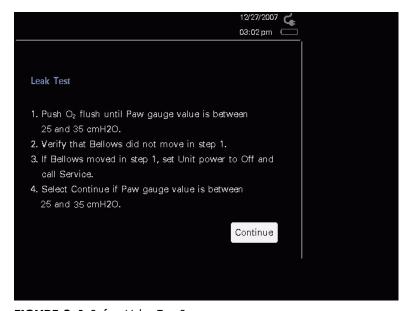


FIGURE 2-4 Safety Valve Test Setup

Installation Checkout Procedure Installation Guide

FIGURE 2-5 Safety Valve Test in Progress

FIGURE 2-6 Safety Valve Test Passed Message

c. After 3 seconds, the screen will prompt to the Leak Test.

12. Perform Leak Test

2 - 12 0070-10-0683 A\$3000™ Service Manual

Installation Guide Installation Checkout Procedure

- **a.** Follow the on-screen instructions.
- **b.** Select **Continue** to start the test.

FIGURE 2-7 Leak Test Setup

Installation Checkout Procedure Installation Guide

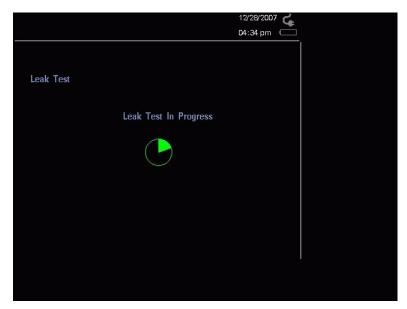


FIGURE 2-8 Leak Test in Progress

c. Select Continue to prompt to the Compliance Test.

FIGURE 2-9 Leak Test Results

2 - 14 0070-10-0683 AS3000™ Service Manual

Installation Guide Installation Checkout Procedure

13. Perform Compliance Valve Test

- **a.** Follow the on-screen instructions.
- **b.** Select **Continue** to start the test.

FIGURE 2-10 Compliance Test Setup

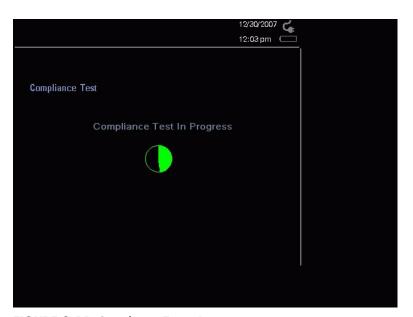


FIGURE 2-11 Compliance Test in Progress

Installation Checkout Procedure Installation Guide

c. Select Continue to prompt to the Normal Screen.

FIGURE 2-12 Compliance Test Results

14. Manual Leak Test

NOTE: The Manual Leak Test detects smaller leaks than can be detected in the Automatic Leak Test.

- **a.** Ensure that the gas pressure for O_2 , N_2O , and AIR are at 50 ±10 psi.
- b. Power ON the AS3000.
- c. Attach a reusable-silicone-rubber breathing circuit to the Breathing System.

NOTE: For testing purposes always use a reusable breathing circuit.

- **d.** Tightly connect the Y-fitting on the breathing circuit to the test port.
- e. Attach a breathing bag to the bag arm.
- **f.** Set the APL Valve to the fully closed position (**70** cmH₂O).
- g. Rotate the O₂ Flow Control Valve until 50 cmH₂O pressure is observed on the Airway Pressure Gauge.
- **h.** Verify that the flow required to stabilize the pressure is less than 300 mL/min.

2 - 16 0070-10-0683 AS3000™ Service Manual

Installation Guide Installation Checkout Procedure

15. Oxygen Sensor Calibration

NOTE: Oxygen Sensor Calibration can be performed in all ventilation modes.

NOTE: See "Periodic Maintenance Schedule of Service Activities" on page 6-2 for when to calibrate the oxygen sensor.

a. Allow the breathing system to warm up and reach thermal equilibrium (approximately 30-60 minutes).

b. Press the **MENU** key and then use the **Navigator[™] Knob** to scroll to the Calibrate menu tab (see FIGURE 2-13). Select the Start Calibration button.

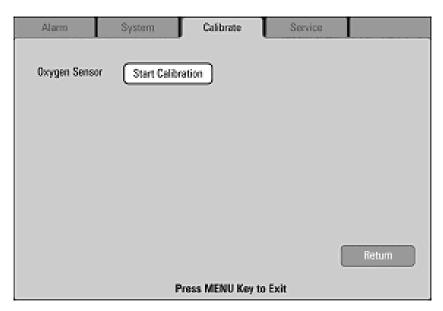


FIGURE 2-13 Calibrate Menu Tab

c. After the Start Calibration button has been selected, the screen shown in FIGURE 2-14 or FIGURE 2-16 will be displayed, instructing the user to remove the oxygen sensor from the Breathing System and expose it to room air for at least 3 minutes before proceeding. The O₂ sensor voltage is displayed during the calibration. This is the amplified O_2 cell voltage at the A/D converter for the oxygen sensor.

NOTE: The O₂ sensor voltage is not displayed for UI versions 2.24 and lower.

d. Flush the O₂ sensor with air from the auxiliary output for 5-10 seconds to ensure that no O_2 bubbles are trapped in the sensor.

NOTE: Do not shake the O_2 sensor during calibration.

NOTE: Keep the O₂ sensor in a vertical position, connector side up,

during calibration.

NOTE: Place the O₂ sensor on top of the heated block during calibration to minimize the temperature difference from

within the heated block.

Installation Checkout Procedure Installation Guide

NOTE: If the system is going to be used during the calibration, insert the O₂ cell plug into the port from which the oxygen sensor was removed using a push and turn motion.

e. After at least 3 minutes have passed, select the Next button to initiate the calibration process. The progress bar shown in FIGURE 2-15 or FIGURE 2-17will be displayed.

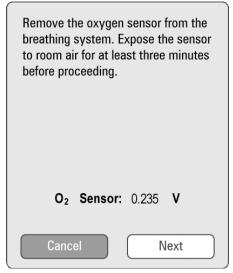


FIGURE 2-14 Oxygen Sensor
Calibration Instructions

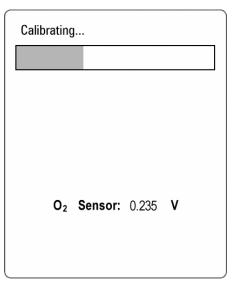
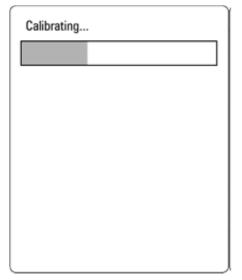
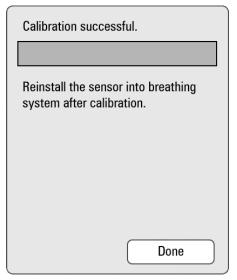


FIGURE 2-15 Oxygen Sensor Calibration Progress Bar

FIGURE 2-16 Oxygen Sensor Calibration Instructions (UI versions 2.24 and lower)




FIGURE 2-17 Oxygen Sensor Calibration Progress Bar (UI versions 2.24 and lower)

2 - 18 0070-10-0683 AS3000™ Service Manual

Installation Guide Installation Checkout Procedure

16. Proceed based on one of the following two conditions:

- If the calibration is successful, the screen shown in FIGURE 2-18 will be displayed, instructing the user to reinstall the oxygen sensor into the Breathing System. Select the **Done** button to complete the process.
- If the calibration fails, the screen shown in FIGURE 2-19 will be displayed, instructing the user to either repeat the calibration (by selecting the **Repeat Cal** button) or to replace the oxygen sensor. If the oxygen sensor must be replaced, select the **Exit** button, replace the oxygen sensor using a push and turn motion, and then repeat the calibration.

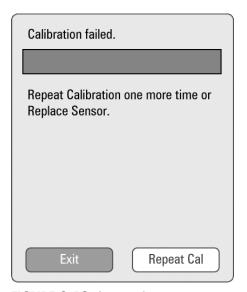


FIGURE 2-18 Oxygen Sensor Calibration Successful

FIGURE 2-19 Oxygen Sensor Calibration Failed

17. Verify that the APNEA alarm activates in Manual mode

- a. Press the MANUAL/AUTO key.
- **b.** After 60 seconds, verify that:
 - an alarm tone sounds
 - the alarm message APNEA is displayed in red text

18. Verify that CMV ADULT ventilator mode operates and that the tidal volume display reads within 15% of the CMV set value.

a. Attach a breathing circuit and breathing bag.

NOTE: For testing purposes always use a reusable breathing circuit.

- **b.** Attach an adult test lung to the Y-fitting of the breathing circuit.
- c. Attach a Vent Tester between the EXP port and the expiratory hose.
- **d.** Set the O_2 flow to 2 L/min and set the N_2O and AIR flow rates to minimum flow.

Installation Checkout Procedure Installation Guide

e. Set the ventilator controls to:

VENTILATOR CONTROLS VENTILATOR SETTINGS Patient Type Adult Ventilation Mode CMV Tidal Volume - VT 600 Breath Rate - freq 8 I:E Ratio - I:E 1:2 Plateau - Tp 10 PEEP - PEEP Off

- **f.** Select **CMV** again to begin ventilation.
- **g.** Verify that the pressure waveform, Tidal Volume, Mean or Plateau Pressure, Resp. rate and minute volume values appear on the screen.
- **h.** Verify the Tidal Volume display is within 15% of the delivered volume measured with the Vent Tester within approximately 1 minute from the start of ventilation.
- i. Verify the delivered volume at the Vent Tester is within 15% of the Tidal Volume set value within approximately 1 minute from the start of ventilation.
- **j.** Verify the measured O_2 concentration is at least 97% after 5 minutes.
- **k.** Set the AIR flow to 3 L/min and set the N_2O and O_2 flow rates to minimum flow.
- **I.** Verify the measured O_2 concentration is 21% ±3% vol. % after 5 minutes.

19. Verify that CMV CHILD ventilator mode operates and that the tidal volume display reads within 10% of the CMV set value.

a. Attach a breathing circuit and breathing bag.

NOTE: For testing purposes always use a reusable breathing circuit.

b. Attach an adult test lung to the Y-fitting of the breathing circuit.

NOTE:

Limit the volume in the test lung to provide sufficient airway pressure to satisfy the Low Peak Pressure alarm. Or reduce the Peak Pressure alarm limit to a lower valve to prevent the alarm when using an adult test lung. Installation Guide Installation Checkout Procedure

- c. Attach a Vent Tester between the EXP port and the expiratory hose.
- **d.** Set the O_2 flow to 2 L/min and set the N_2O and AIR flow rates to minimum flow.
- e. Set the ventilator controls to:

VENTILATOR CONTROLS	VENTILATOR SETTINGS
Patient Type	Child
Ventilation Mode	CMV
Tidal Volume - V _T	120
Breath Rate - freq	20
I:E Ratio - I:E	1:2
Plateau - T _P	10
PEEP - PEEP	Off

- f. Select CMV to begin ventilation.
- **g.** Verify that the pressure waveform, Tidal Volume, Mean or Plateau Pressure, Resp. rate and minute volume values appear on the screen.
- **h.** Verify the Tidal Volume display is within 25 ml or ±15% of the delivered volume (whichever is greater) measured within approximately 1 minute from the start of ventilation.
- i. Verify the delivered volume as measured by a Vent Tester at the expiratory port, is within 17% of the Tidal Volume set value within approximately 1 minute from the start of ventilation.
- j. Verify that the PEEP reading is 4 ±2 within approximately 1 minute from the start of ventilation.

20. Verify that the PCV ADULT ventilator mode operates.

a. Attach a breathing circuit and breathing bag.

NOTE: For testing purposes always use a reusable breathing circuit.

- **b.** Attach an adult test lung to the Y-fitting of the breathing circuit.
- c. Attach a Vent Tester between the EXP port and the expiratory hose.
- **d.** Set the O_2 flow to 3 L/min and set the N_2O and AIR flow rates to minimum flow.

Installation Checkout Procedure Installation Guide

e. Set the ventilator controls to:

VENTILATOR CONTROLS	VENTILATOR SETTINGS
Patient Type	Adult
Ventilation Mode	PCV
Target Pressure - P TARGET	20
Breath Rate - freq	8
I:E Ratio - I:E	1:2
PEEP - PEEP	Off
Inspiratory Slope - T _{slope}	0.5

- **f.** Select **PCV** to begin ventilation.
- **g.** Verify the Peak Pressure reading of the display is ±20%, at least 2 cmH₂O of the Peak Pressure measured with the Vent Tester.
- **h.** Verify that the pressure waveform, Tidal Volume, Resp. Rate and minute volume values appear on the screen.
- Verify that the PEAK Value reaches 20 ±4 cmH₂O within five breaths from the start of ventilation.

21. Verify that the Low Airway Pressure alarm activates.

- **a.** While the ventilator is running disconnect the Inspiratory hose.
- b. Verify that the "Low Airway Pressure" and the "APNEA" message appear on the screen.
- **c.** Reconnect the hose to the Inspiratory port and verify that the alarm is cleared.

22. Verify that the O_2 concentration alarm signals activate.

- a. While the ventilator is running, press the ALARM LIMITS key.
- **b.** Set the O_2 Minimum Alarm Limit to a value higher than the current O_2 reading.
- Verify that the FiO₂ alarm activates indicated by an audio tone is present and that the alarm message "Low FiO₂" appears on the screen within three ventilation cycles.
- ${f d.}$ Set the ${\sf O}_2$ Minimum Alarm Limit back to a value lower than the current ${\sf O}_2$ reading.
- e. Verify that the FiO₂ alarm resets.

Installation Guide Installation Checkout Procedure

23. Verify that the drive gas pressure loss alarm signals activate and N₂O stops and AIR continues to flow.

- **a.** Set the O_2 flow for 1 L/min.
- **b.** Set the N₂O flow to 1 L/min.
- c. Set the AIR flow to 1 L/min.
- **d.** Disconnect the O_2 line supply to the **AS3000**, and Close the O_2 cylinder.
- **e.** Verify that the flow of N_2O stops when O_2 is lost.
- f. Verify that AIR continues to flow.
- g. Verify the "O₂ Supply Failure" message appears on screen, a steady audio tone should sound.
- **h.** Reconnect O₂ line pressure source to the **AS3000**.
- i. Verify that the alarms are reset.
- i. Verify N₂O flow has resumed once O₂ pressure returns.

24. Verify that the battery operation and charging icons appears.

- a. Set the vent mode to Standby.
- **b.** Disconnect AC line cord.
- **c.** Verify that the battery icon appears on the screen and indicates the charge level of the battery.
- **d.** Verify that the line cord icon is flashing.
- e. Verify that the flow meter backlight is illuminated during battery operation.
- **f.** When the battery icon is in a not full state, reconnect the AC line cord.
- g. Verify that the battery charge icon appears on the screen.
- h. Verify that the flow meter backlight is illuminated during AC voltage operation.

25. Verify operation of the work light.

- a. Turn on the work light located on the bottom side of the top panel.
- **b.** Verify that it lights in both on positions.

26. Verify that the Auxiliary O₂ and AIR Flowmeters operates.

- **a.** Verify an AIR flow of 15 L/min can be obtained by connecting the auxiliary AIR hose to the pressure source and opening the flow meter.
- **b.** Verify an O₂ flow of 15 L/min can be obtained by connecting the auxiliary O₂ hose to the pressure source and opening the flow meter.

27. Verify that the Suction Regulator operates in LINE and REGULATE positions.

- a. Set the suction regulator's selection dial to LINE.
- **b.** Verify maximum suction vacuum on the regulator's gauge.
- c. Set the suction regulator's selection dial to **REGULATE**.
- **d.** Verify the suction vacuum is adjustable on the regulator's gauge.
- e. Set the suction regulator's selection dial to OFF.

Installation Checkout Procedure Installation Guide

28. Verify that the Breathing System heats to body temperature.

- **a.** Operate the **AS3000** on AC operation for approximately 40 minutes.
- **b.** Verify the Breathing System has heated up to body temperature

29. Complete electrical safety inspection.

NOTE: Perform the electrical safety inspection as the last step after completing a repair or after routine maintenance. Perform this inspection with all covers, panels, and screws installed.

- a. Withdraw the Power cable(s) from the convenience receptacles at the rear of the AS3000.
- **b.** Plug the **AS3000** into a Safety Analyzer.
- c. Connect the case ground lead of the analyzer to the U-blade ground of one of the convenience receptacles. Perform the following tests with the case grounded:
 - Normal polarity
 - Normal polarity with open neutral
- **d.** Perform the following tests with the case ungrounded:
 - Normal polarity
 - Normal polarity with open neutral
 - Reverse polarity
- e. Verify that the maximum leakage current does not exceed 300 µA (0.3 mA).

NOTE: Ground Resistance (between the U-blade ground on any convenience outlet to the U-blade ground on the AC line cord).

- f. Plug the AS3000 into the safety analyzer.
- g. Attach the resistance-measuring probe on the analyzer to the AS3000 U-blade ground on any convenience outlet.
- **h.** Invoke the resistance function on the safety analyzer, following the instructions for the analyzer.
- i. Verify that resistance to ground is less than 0.2 Ohms (200 mOhms).

30. Check the vaporizer interlock.

- a. Attach two vaporizers to the Vaporizer Mounting Manifold and lock them in place.
- **b.** Rotate either of the vaporizer's dial to 3% agent.
- **c.** Verify that the other vaporizer dial cannot be rotated to a setting.
- **d.** Set both vaporizer's dials to **0**.
- e. Rotate the other vaporizer dial to 3%.
- f. Verify that the first vaporizer dial cannot be rotated.
- g. Rotate both vaporizer dials to T and remove both vaporizers.
- **h.** Verify that the locking spring is intact.
- i. Reconnect both vaporizers to the Vaporizer Mounting Manifold

Installation Guide Installation Checkout Procedure

31. Check each vaporizer's agent concentration output and accuracy.

- a. Insert the agent measuring device sampling tube inside the common gas outlet port.
- **b.** Fill the Vaporizer with anesthetic agent.

NOTE: Do not overfill by filling past the indicator line on the vaporizer.

- **c.** Test the vaporizer accuracy per the Vapor 2000 instructions or see the appropriate vaporizer manual for testing details.
- d. Test each vaporizer in turn.
- e. Test any vaporizer on the Vaporizer Storage Mount.
- f. Remove the measuring device from the common gas outlet port.
- g. Connect the fresh gas tube to the common gas outlet port.

32. Dräger Vapor 2000 Operating Instructions ARRB-F001.

- **a.** Fill Vaporizer at least half full between minimum and maximum mark.
- b. Allow the filled Vapor to warm up to room temperature of 20-24°C. Wait long enough for the temperature to equalize the time will vary depending on the temperature differential 'ΔT'.
 - 1 hour = up top 2° C
 - 3 hours = $\pm 6^{\circ}$ C
 - 4 hours = $\pm 10^{\circ}$ C
 - 5 hours = $\pm 20^{\circ}$ C
- Check anesthetic agent monitor. Perform zero calibration of monitor with the desired gas (AIR or O₂)
- **d.** Connect monitor to fresh gas outlet or Y-fitting. Make sure that all connections are leak-tight.
- **e.** Connect and start scavenging system.
- **f.** Switch OFF ventilator or set vent pressure to less than 5 cmH₂O.
- g. Set monitor to anesthetic agent being used and to continuous measurement.
- **h.** Set flow between 2.5 and 4 L/min AIR. Use O_2 if AIR is not available.
- i. Check O and T marks, 1 vol.% 4 vol % and at least three other concentrations.
- i. Adjust control dial on the vaporizer.
- **k.** Read concentration after it has reached steady state.
- **I.** Correct measured values for the effect of carrier gas used. If AIR no correction required. If O_2 use following correction factor:
 - Measured value vol.% = <1.0, correction = -0.05 vol.%
 - Measured value vol.% = 1.0 2.0, correction = -0.1 vol.%
 - Measured value vol.% = 2.5 4.0, correction = -0.2 vol.%
 - Measured value vol.% = 5.0 8.0, correction = -0.3 vol.%
- **m.** If the value displayed on the monitor is in % partial pressure, no correction is required. If in vol.% convert to partial pressure:
 - Concentration [% partial pressure] = measured value [vol.%] x atmospheric pressure [cmH₂O] / 1013 cmH₂O

Installation Checkout Procedure Installation Guide

- ${f n.}$ For setting ${f 0}$ and ${f T}$ there should be no output of anesthetic agent.
 - At 1 vol.%; 0.8 1.2 vol.% *
 - At 2 vol.%; 1.8 2.2 vol.% *
 - At 3 vol.%; 2.8 3.2 vol.% *
 - At 4 vol.%; 3.8 4.2 vol.% *
 - At 5 vol.%; 4.8 5.2 vol.% *
 - At 6 vol.%; 5.7 6.3 vol.% *
 - At 7 vol.%; 6.7 7.3 vol.% *
 - At 8 vol.%; 7.7 8.3 vol.% *
 - * = Correct for temperature and carrier gas if necessary.
- Switch off the vaporizer until engages.
- ${\bf p}_{ullet}$ Switch off the AIR or O_2 flow.

2 - 26 0070-10-0683 AS3000™ Service Manual

3.1 Introduction

This chapter of the Service Manual provides the necessary technical information to perform repairs to the system. The most important prerequisites for effective troubleshooting are a thorough understanding of the system's functions, as well as understanding its principles of operation.

Warnings and Cautions Repair Information

3.2 Warnings and Cautions

In the event the instrument covers are removed, observe the following warnings and cautions:

3.2.1 Warnings

WARNING: Whenever using anesthetic gases, nitrous oxide, oxygen, or

any hospital gas always follow the appropriate agent evacuation/collection procedures. Use the hospital gas

evacuation system.

3.2.2 Cautions

CAUTION: This device uses high pressure compressed gas. When

attaching or disconnecting backup gas cylinders, always turn the cylinder valves slowly. Use the AS3000 flow meters to bleed down the pressure, watching the cylinder gauge indicate the depleting cylinder pressure, before

disconnecting the cylinder from the yoke. Always open and

close cylinder valves fully.

CAUTION: This device operates using compressed gas at high

pressures from the hospital central supply. When connecting gas supply lines attach the hose connection to the machine before connecting the quick disconnect fitting to the hospital source. Disconnect the supply hose from the hospital source connection prior to disconnecting it from the AS3000 gas

connection fittings.

3.3 Troubleshooting Guidelines

- **1. Identify the problem** Due to the wide variety of potential symptoms, certain problems may be more subtle than others. Following the guidelines of the tests will help determine the problem, if one exists.
- 2. Avoid shorting component leads together During repair procedures, it can be tempting to make a quick series of measurements. Always turn the power off before connecting and disconnecting the test leads and probes. The accidental shorting of leads can easily stress the components and cause a second failure (aside from the safety risk).
- **3. Use the proper equipment** The equipment listed in "Special Tools Required" on page 3-3, is suggested to fulfill a wide range of troubleshooting requirements. It is imperative to use the designated equipment in order to ensure proper results of any and all test procedures.
- **4.** Clean up the repair area After any repair, clean off the repair area.

Repair Information Special Tools Required

3.4 Special Tools Required

	PART NUMBER	DESCRIPTION	SPECIFICATION
1	0070-00-0683	AS3000 Service Manual	NA
2	not applicable	Vaporizer Instruction Manual	NA
3	not applicable	Safety Analyzer	Dempsey 430 or equivalent
4	not applicable	Digital Volt Meter	3 1/2 digit
5	not applicable	Agent (and N ₂ O) Analyzer	±0.3 V/V% + 5% of reading
6	0138-00-0012	Test Lung, Adult	NA
7	not applicable	Digital Pressure Meter	BC Biomedical DPM-2301751 NMC Digital Pressure Meter
8	not applicable	Central supplied O ₂ , N ₂ O, AIR	Minimum of 35 psi, DISS connections.
9	not applicable	Cylinder gases O2, N ₂ O, AIR	Full PISS yoke connections.
10	not applicable	Hand tools, Allen wrench set	Metric
11	0367-00-0080	Tank Wrench	NA
12	0103-00-0508	Y-Fitting	15 mm connection
13	0004-00-0076	Respiration Tube (2 required)	0.6 meter silicone, 15 mm
14	0992-00-0139	Breathing Bag	2.3 L silicone
15	0510-00-0020	Krytox Lubricant	NA
16	not applicable	Vent Tester	Certifier-FA PLUS Respiratory Vent.Tester 4080
17	0997-00-0641	AS3000 Calibration hose	NA
18	0103-00-0691	AS3000 test plug	NA
19	0040-00-0448	Plug Kit	NA
20	0453-00-1216	Regulator Calibration Hose	NA

3.5 Troubleshooting Chart

The following table shows common symptoms and corrective actions for problems when troubleshooting the **A53000**. The information given indicates failures during startup and runtime.

3.5.1 Common Symptoms and Corrective Actions for Field Service Technicians

MESSAGE/ISSUE	OCCURRENCE	CAUSE	SOLUTION		
"BDU Communication FAIL"	Startup test	The power supply switch is turned to ON, immediately after turned to OFF, which makes the time too short for the BDU contr board power to reboot.	 Turn the power supply switch to OFF and power on again after waiting for a while (1 - 2 seconds). 		
		2 The data wire is disconnected or damage	 Check whether the data wire (signal wire at backside of display) is disconnected or is damaged. 		
		3 The BDU control board is defective.	3 Replace the BDU control board and perform each item of calibration and startup test again		
"Software Version FAIL"	Startup test	Software versions of GUI, BDU and Keyboard are incompatible.	1 Update software version.		
		2 The power supply switch was turned ON, and OFF quickly.	2 Turn the power supply switch to OFF, wait 1 -2 seconds, then power on again.		
		3 The data wire is disconnected or damage	 d. 3 Check whether the data wire (signal wire at backside of display) is disconnected or is damaged. 		
		4 The BDU control board is defective.	4 Replace the BDU control board and perform each item of calibration and startup test again		
		5 The keyboard board is defective.	5 Replace the user interface assembly.		
"BDU EEPROM Data FAIL"	Startup test	 Data stored in EEPROM on BDU control board is lost (checksum error) 	 Startup. Then perform each item of the calibration and startup test again. 		
		2 The BDU is defective	2 Replace the BDU board		
"EEPROM IC FAIL"	Startup test	The BDU control board is defective or its EEPROM is damaged.	1 Check that the EEPROM (BDU U12) is connected correctly, or Replace the EEPROM and BDU control board, and perform each item of the calibration and startup test again.		
"BDU WDT FAIL"	Startup test	 The Watch Dog Timer in the digital signal processor on the BDU control board is damaged. 	 Replace the BDU control board, and perform each item of calibration and startup test again 		
"AD/DA FAIL"	Startup test	1 The AD or 4052 in the digital signal processor on BDU control board is damaged.	 Replace the BDU control board, and perform each item of the calibration and startup test again. 		

MESSAGE/ISSUE	OCCURRENCE	CAUSE	SOLUTION
"Vent/Manual Valve Failure"	Startup test	1 The wire that connects to the vent/manual valve is disconnected or is damaged.	 Check whether the connection wire of the vent/manual valve is disconnected or is damaged.
		2 The vent/manual solenoid valve is damaged.	2 Replace the vent/manual solenoid valve.
		3 The amplifier board or connection cable defective.	3 Check the connection cable and replace the amplifier board. Then perform each item of the calibration and startup tests again.
"Expiration Sensor Failure"	Startup test	1 Fresh gas flow is present at startup.	1 Turn off all fresh gas flow and reboot the unit.
		2 The sensor board is defective.	Replace the sensor board, and then perform each item of the calibration and startup test again.
"Keyboard Communication . FAIL"	Startup test	The data wire is disconnected or is damaged.	1 Replace the user interface assembly.
		2 The keyboard board is defective.	2 Replace the user interface assembly.
"Pressure Sensor FAIL"	Startup test	 The connection wire of the PAW board is disconnected or is damaged. The connection of the PAW board or sensor board is defective. 	 Check whether the connection wire of the PAW board is disconnected or damaged. Check the power supply and connection of the sensor board. Replace the Paw board and
		3 The tubing kinked or occluded.	sensor board. 3 Check the tubing for kinks and remove any occlusions.
"O ₂ Sensor FAIL"	Startup test	 The O₂ concentration is below 16%. The oxygen sensor is out of range. The main unit-oxygen sensor cable is disconnected or damaged. The amplifier board is defective. 	 Increase O₂ concentration. Replace the oxygen sensor. Check whether the main unit-oxygen sensor cable is disconnected or damaged. Replace the amplifier board, and then perform each item of the calibration and startup test again.
"PEEP Valve FAIL"	Startup test	 The connection wire of the PEEP valve is disconnected or damaged. The PEEP valve is defective. The Amplifier board is defective. 	 Check whether the PEEP valve is disconnected or damaged. Replace the PEEP valve. Replace the amplifier board and then perform each item of the calibration and startup test again.
"Inspiration Valve FAIL"	Startup test	 The connection wire of the inspiration valve is disconnected or damaged. The inspiration valve is defective. The amplifier board is defective. 	 Check whether the inspiration valve is disconnected or damaged. Replace the inspiration valve. Replace the amplifier board and then perform each item of the calibration and startup test again.

MESSAGE/ISSUE	OCCURRENCE	CAUSE	SOLUTION
"Inspiration Sensor FAIL" or "Inspiration Sensor FAIL Try re-starting the system with all gas flows OFF" (UI version 2.25 and higher)	Startup test	 Fresh gas is flowing during the startup procedure. The tubing kinked or occluded. The sensor board is defective. 	 Verify that no fresh gas is flowing during the startup procedure. Check the tubing for kinks and remove any occlusions. Replace the sensor board and then perform each item of the calibration and startup test again.
"O ₂ Supply FAIL"	Startup test Runtime	 The gas source is not connected. The gas supply pressure switch or its cable is damaged. The amplifier board is defective. 	Check gas source. Check and replace the switch or cable of the gas source. Replace the amplifier board, and then perform each item of the calibration and startup test again.
"AC Power Failure"	Startup test Runtime	1 AC power is not connected. 2 A fuse is tripped	1 Check the connection of AC power. 2 Replace the fuse.
"Low Battery"	Runtime	 Battery capacity is low. The battery is defective. The connection wire or power board is defective. 	 Charge the battery by connecting AC power. Replace the battery. Check the connection wire or replace the power board.
"Alarm Speaker FAIL"	Startup test	 The connection wire to the speaker is disconnected or damaged. The speaker is damaged. The keyboard board is defective. 	 Check whether the connection wire of the speaker is disconnected or damaged. Replace the user interface assembly. Replace the user interface assembly.
"Software Mismatch" or "Software Mismatch or Failure to Shut Down Completely" (UI version 2.25 and higher)	Startup test	Power is recycled to the unit too quickly, no allowing the memory to fully clear.	ot 1 Shut down the unit and wait until the backlight is fully extinguished before restoring power.
Charging state is always displayed.	Runtime	Battery capacity is low. The connection wire to the battery is disconnected or damaged. The battery is defective.	Charge the battery by connecting AC power. Check whether the connection wire to the battery is disconnected or damaged. Replace the battery.
During startup leak test, the bellows moves when it shouldn't	Startup test	1 A solenoid failure or wiring error.	Correct the wiring or replace the solenoid valve.
In leakage detection, The APL Valve detection pressure displayed on the pressure gauge does not stay within 28 - 32 cmH ₂ O.	Startup test	 The Breathing System pneumatic hose leak gas when in manual mode. Pressure gauge failure. The APL Valve is out of spec 	Replace the Breathing System pneumatic hose Replace the pressure gauge Replace the APL Valve

MESSAGE/ISSUE	OCCURRENCE	CAUSE	SOLUTION
In leakage detection, Safety valve detection failed.	Startup test	The proportional valve on the airway module failed. The safety valve in the airway module failed.	 Calibrate the inspiration valve again. Replace the airway module.
In leakage detection, the leakage volume is 501 - 999mL.	Startup Test	 The tubing connection is not tight. Incorrect installation of the absorber canister. The pressure gauge or oxygen sensor on the circuit is not installed tightly. 	Check the connection on the tubing. Check the installation of the absorber canister. Check the installation of the pressure gauge or oxygen sensor on circuit.
In leakage detection, the leakage volume is larger than 1L.	Startup Test	 There is a leakage in the fresh gas supply. The tubing connection is not tight. Incorrect installation of the absorber canister. The pressure gauge or oxygen sensor on the circuit is not installed tightly. There is a leakage in the fresh gas supply. 	 Check the fresh gas supply for leakage Check the connection on the tubing. Check the installation of the absorber canister. Check the installation of the pressure gauge or oxygen sensor on circuit. Check the fresh gas supply for leakage
In compliance test, compliance test failed.	Startup Test	1 The Y-fitting is not sealed or the Breathing System has leakage. 2 The respiration tubes are too long. 3 Calibration of the pressure sensor is inaccurate. 4 The flow meter is set incorrectly 5 The calibration of the flow meter is inaccurate	 Check the connection and leakage of respiration tubes. The respiration tubes cannot be too long. Calibrate the pressure oxygen again. Set the flow meter to the correct value Recalibrate the flow meter
The power supply switch on the main unit is defective.	All	 The power supply switch on the main unit or the cable connection failed. Communication board is defective. 	 Check the connection cable of the power supply switch of the main unit, or replace the power supply switch of main unit. Replace the communication board.
All or some keys are non responsive.	All	 The keyboard is defective. The communication board is defective. 	Replace the user interface assembly. Replace the user interface assembly.
The encoder is non responsive.	All	 The encoder failed. The communication board is defective. 	 Replace the user interface assembly. Check and replace the user interface assembly
All or some of the work lights are defective.	All	 The work light circuit board is defective. The cable is defective 	Replace the work light circuit board. Check the connection to the power supply.
The switch on the work light is defective.	All	1 The switch on the work light is defective.	1 Replace the work light switch.
The flow meter light is non operational.	All	 The power supply to the light is defective The foil of light is defective. The inverter is defective. 	 Replace the power supply to the light. Replace the foil of light. Replace the inverter

MESSAGE/ISSUE	OCCURRENCE	CAUSE	SOLUTION
Heating of circuit is non functional.	Runtime	 Line power is not connected. The circuit cable is defective. Heating control board is defective. 	 Check the line power connection. Replace the cable connection to the circuit. Replace the heating control board.
AC Outlets are non functional	All	1 A fuse is tripped	1 Replace the fuse
The O ₂ reading is out of tolerance	Runtime	The calibration of the oxygen sensor is inaccurate, or the oxygen sensor is defective.	Calibrate the oxygen sensor again, or replace the oxygen sensor.
The display screen has a hotspot or uneven brightness	All	 The display screen is defective. PC104 is defective. 	 Replace the user interface assembly. Replace the user interface assembly.
The display screen is a solid color	Startup Test Runtime	1 The GUI program has crashed. 2 The signal cable is disconnected. 3 PC104 is defective. 4 The communication board or power supply for the light is defective. 5 The display screen is damaged.	Reboot the system Check the signal cable. Replace the user interface assembly. Replace the user interface assembly. Replace the user interface assembly.
The pressure reading is out of tolerance	Runtime	Calibration of the pressure sensor is out of spec.	1 Calibrate the pressure sensor again.
The PEEP reading is out of tolerance	Runtime	 Calibration of expiration valve (PEEP) is inaccurate. Calibration of pressure sensor is inaccurate. 	 Calibrate the expiration valve (PEEP). Calibrate the pressure sensor.
the tidal volume reading is out of tolerance	Runtime	 The compliance test after startup is inaccurate. Calibration of the flow sensor is inaccurate. Calibration of the inspiration valve is inaccurate. Calibration of the pressure sensor is inaccurate. 	Perform the compliance test after startup again. Calibrate the flow sensor again. Calibrate the inspiration valve again. Calibrate the pressure sensor again.
"System Self Test"	Startup Test	1 Self-test during each startup.	1 No action needed.
"NON-FUNCTIONAL Call Service Representative"	Startup Test	1 A failure has been found (Displayed on the screen), which leads to the abnormal operation of anesthesia machine.	 Handle it according to specific information on the failure.
After the startup test, only the MANUAL/AUTO key is displayed, with the alarm: (except O ₂ supply fail)	Startup Test	1 A failure has been found (Displayed on the screen), which leads to the abnormal operation of anesthesia machine.	 Handle it according to specific information on the failure.
After the startup test, there are Bypass and Continue keys, but with an alarm displayed	Startup Test	1 A failure has been found (Displayed on the screen), but it does not affect the normal operation of each ventilation mode.	Handle it according to specific information on the failure.

MESSAGE/ISSUE	OCCURRENCE	CA	USE	SC	DLUTION
"Ventilator setting is not possible!"	Runtime	1	A parameter has been set to a limit that can be set.	1	The parameter set cannot exceed the adjustable range. If the limit is not reached, another parameter may be limiting the range and needs to be adjusted accordingly
"Displayed parameter values are for the pending mode"	Runtime	1	The AS3000 is in the pre-selection mode, but it is still working according to the original operating mode.	1	Set parameters 15 seconds in advance; or directly confirm and enter ventilation mode; or press the NORMAL SCREEN button to return to the original ventilation mode interface; or do not perform any operation and it will automatically return to the original ventilation mode interface after 15 seconds.
"Pressure, Volume and Apnea Alarms are OFF!"	Runtime	1	The functional alarm in Manual mode is disabled.	1	Enable the functional alarm in Manual mode.
"Automatic Ventilation not available!"	Startup Test Runtime	1	A failure has been found (Displayed on the screen); the AS3000 can work only in Standby/Manual mode. This information is displayed after entering the Main Screen.	1	Handle it according to specific information on the failure.
"BDU Communication Failure!"	Startup Test Runtime	1 2	The communication cable is disconnected. The BDU software has crashed or reset.	1 2	Check the communication cable. Power on again.
"O ₂ Sensor failure"	Runtime	1	The main unit-oxygen sensor cable is disconnected.	1	Check the unit-oxygen sensor cable.
"O ₂ Supply failure"	Runtime	1	The gas source is closed or disconnected.	1	Check the gas source.
Continuous Pressure	Runtime	1 2 3	Airway pressure is too high. The expiration valve (PEEP) is defective. The airway is occluded.	1 2 3	Relieve the airway pressure Repair/replace the expiration valve Clear the occlusion
High Airway Pressure	Runtime	1	Airway pressure is high.	1	Adjust the upper limit set for the airway pressure alarm.
Low Airway Pressure	Runtime	1	Airway pressure is low.	1	Adjust the lower limit set for the airway pressure alarm.
Negative Pressure	Runtime	1	Airway pressure is continuously negative.	1	Check the airway and fresh gas setting
Low FiO ₂	Runtime	2	Oxygen concentration is lower than the lower limit set for Oxygen Concentration alarm. Oxygen calibration is inaccurate.	2	Adjust the lower limit set for the Oxygen Concentration alarm or the actual oxygen concentration. Calibrate the oxygen concentration sensor again.

Troubleshooting Chart

MESSAGE/ISSUE	OCCURRENCE	CAUSE	SOLUTION
High FiO ₂	Runtime	 Oxygen concentration is higher than the upper limit set for the Oxygen Concentration alarm. Oxygen calibration is inaccurate. 	 Adjust the upper limit set for the Oxygen Concentration alarm or the actual oxygen concentration. Calibrate the oxygen concentration sensor again.
APNEA	Runtime	1 Breathing hoses are disconnected.	1 Check the breathing hoses.
Low Battery	Runtime	1 Battery capacity is low.	1 Connect the unit to AC power.
High Minute Volume	Runtime	 Minute ventilation is higher than the upper limit set for the Oxygen Concentration alarm. 	 Adjust the upper limit set for the Minute Ventilation alarm.
Low Minute Volume	Runtime	1 Minute ventilation is lower than the lower limit set for the Minute Volume alarm.	 Adjust the lower limit set for the Minute Volume alarm.
APNEA Backup	Runtime	PS mode is not triggered and APNEA backup ventilation is given according to the minimum breathing frequency that has been set.	1 No action needed.
High PEEP	Runtime	 The expiration time is too short or expiration limb is occluded The expiration valve (PEEP) is defective. 	1 Check the time setting and expiration pipeline. 2 Check the expiration valve (PEEP).
Keyboard communication Failure	Startup Test Runtime	 The signal wire is disconnected or damaged. The keyboard board program crashed. 	 Check the signal wire. Power on again.
AC Power Failure	All	AC power is not connected or a fuse is tripped.	1 Connect AC and check the fuses.
O ₂ Cal Due	Startup Test Runtime	1 The oxygen sensor has not been calibrated for more than 3 days.	1 Calibrate the oxygen sensor.
Tidal volume displayed by the AS3000 is smaller than the value displayed on bellow.	Runtime	1 This caused by the compliance and compensation of resisting force between the airway and patient.	1 No action needed.
Bellows is deflated and at the bottom of its travel during runtime, after initial power-up and Leak Test.	Runtime	This is caused by a disconnected breathing circuit, a removed absorber canister, a removed O ₂ sensor or sensor adapter, check valve dome rings, or no fresh gas flow while ventilator is running.	Install a breathing circuit and connect the Y-piece to the Test port. Select CMV mode and confirm the selection. Immediately push the O ₂ Flush button until the bellows is completely filled. Return to STANDBY mode and remove Y piece from Test port.

Repair Information Leak Troubleshooting

3.6 Leak Troubleshooting

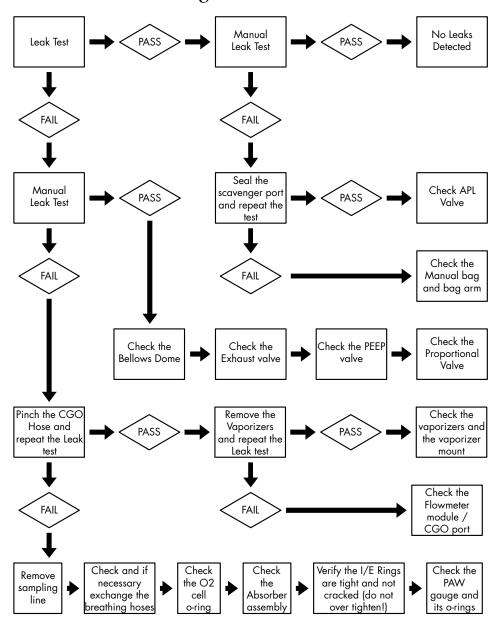


FIGURE 3-1 Leak Troubleshooting Flow Chart

3.7 Test Pneumatics

The following section shows the pneumatic components involved while performing the **AS3000** startup tests.

3.7.1 Leak Test - Manual Ventilation Test

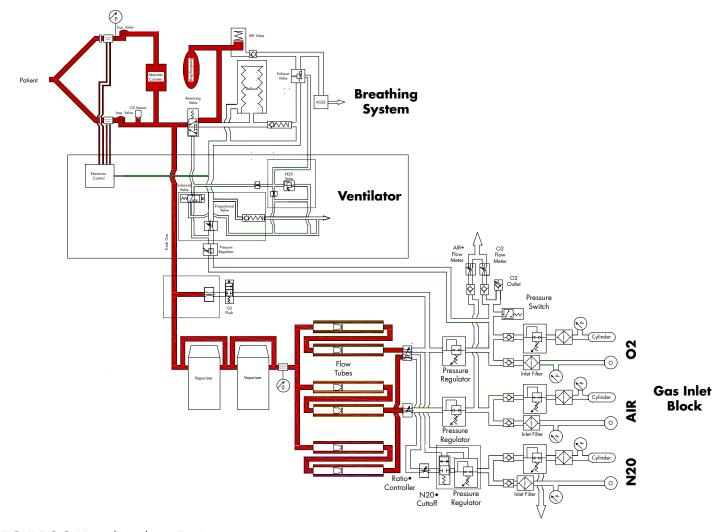


FIGURE 3-2 Manual Ventilation Test Pneumatics

3.7.2 Safety Valve Test

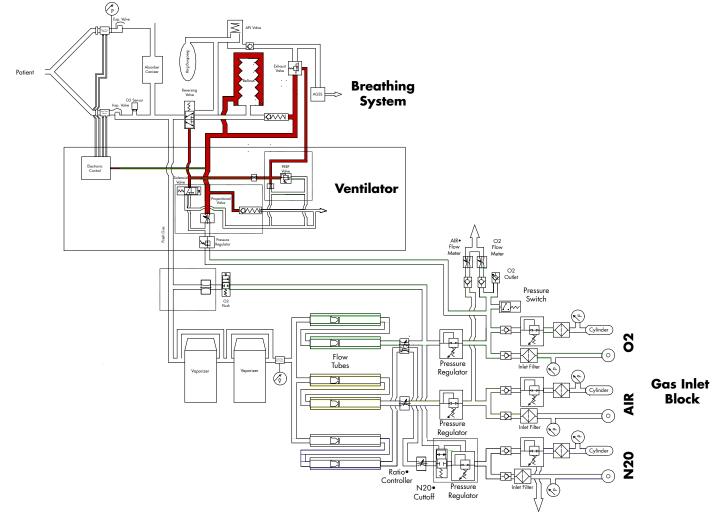


FIGURE 3-3 Safety Valve Test Pneumatics

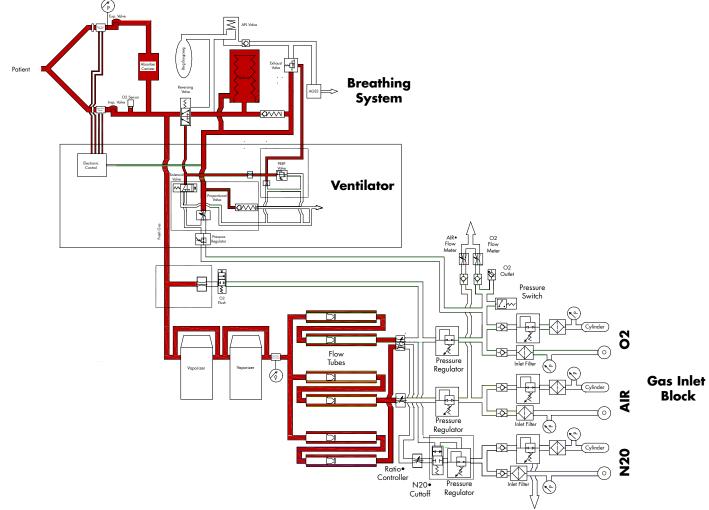


FIGURE 3-4 Automatic Ventilation Test Pneumatics

3.7.4 Compliance Test

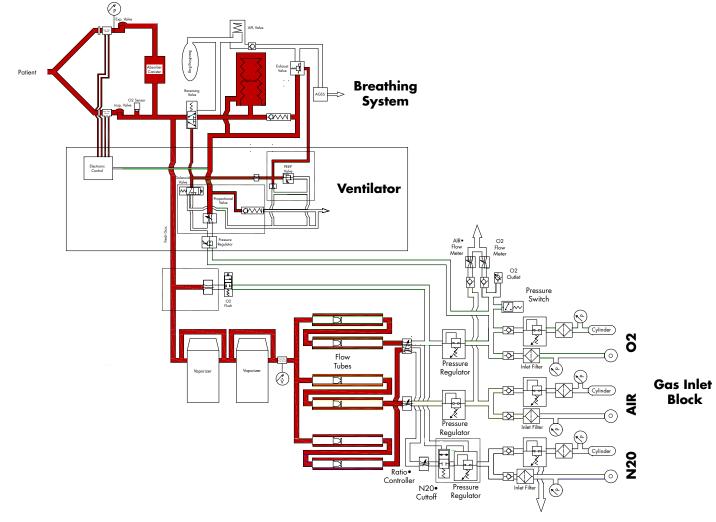


FIGURE 3-5 Compliance Test Pneumatics

3.8 Pneumatic Hose and Wiring Diagrams

3.8.1 Pneumatic Hose Labeling

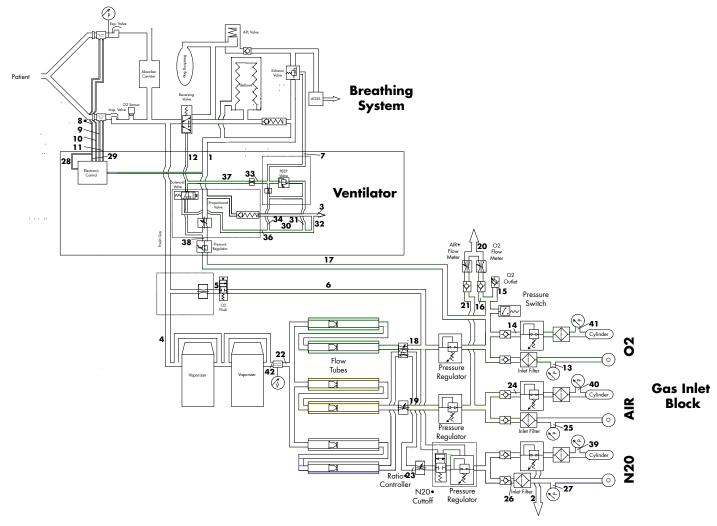


FIGURE 3-6 Pneumatic Hose Labeling Diagram

3.8.2 Sampling Pipeline Module Interface Labeling

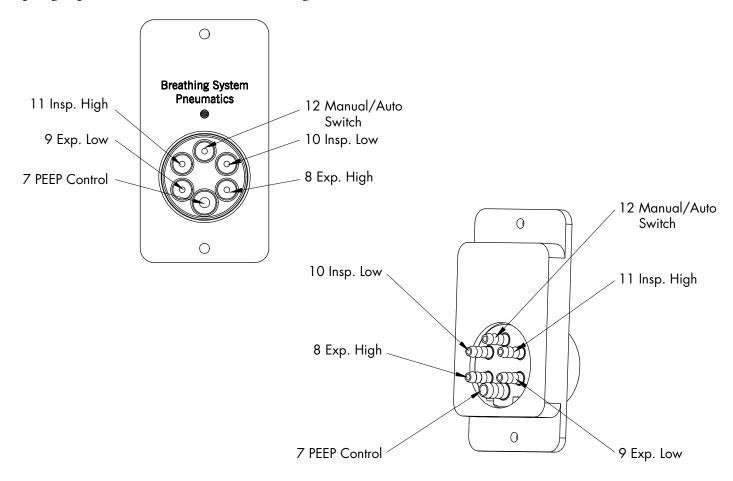


FIGURE 3-7 Sampling Pipeline Module Interface Diagram

3.8.3 Electrical Cable Labeling

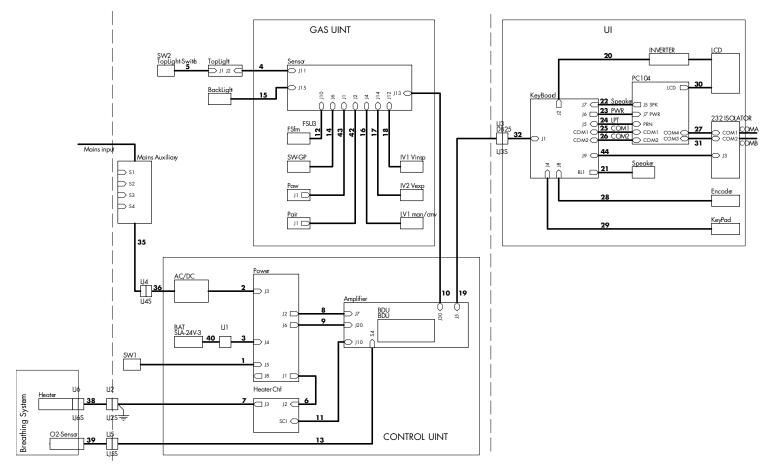


FIGURE 3-8 Electrical Cable Labeling Diagram

Replacement Parts and Accessories

4.1 Introduction

This section of the manual provides information that is necessary to identify replacement parts and accessories.

4.2 Available Replacement Parts and Sub-Assemblies

The following part lists are divided into two sections. The Isometric Drawings and the accompanying part lists identify the available chassis mounted components.

4.2.1 Exchange Program

Mindray DS USA, Inc. offers an exchange policy for many of the printed circuit board assemblies. This program may provide the most expedient method of servicing the equipment. A standard charge is associated with this service. Contact the Service Department for details concerning this exchange program.

Many circuit boards make extensive use of multi-layer and surface mount technology. Individual component replacement is not recommended on these boards. Board exchange or replacement is the most efficient method of repair for these types of assemblies. Component level repair is not recommended.

Circuit boards, returned as parts of the exchange program, that show evidence of improper repair techniques are not considered for exchange. Damaged boards will be invoiced at full value and no exchange credit will be applied.

4.2.2 Replacement Parts Pricing Information

Current parts prices and exchange charges can be determined by contacting the Customer Support Department.

4.2.3 Ordering Information

Replacement parts and assemblies are available. Please follow these guidelines when ordering replacement items for the product:

- 1. Include the Model and Serial Number of the product.
- Include the Part Number exactly as it appears in the Parts List under the column, "Part Number."
- 3. Include a description of the item.

EXAMPLE ORDERS: (1) ea. P/N 0334-00-2611-01

Label, Fuse Replacement, Serial No. XXXX

(2) ea. P/N 0213-07-0404

Screw, Self Tap, $\#4 \times 0.25$ ", Serial No. XXXX

NOTE: Mindray DS USA, Inc. maintains a policy of continuous

development for product improvement and reserves the right to change materials, specifications, and prices without

notice.

4.3 Isometric Drawings

4.3.1 Chassis

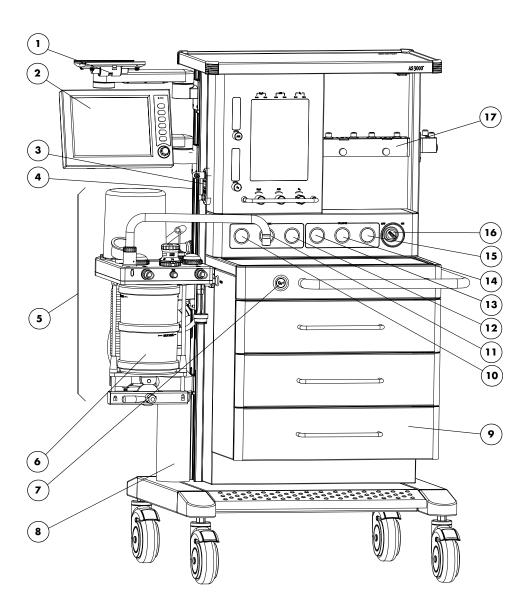


FIGURE 4-1 AS3000 Frontview

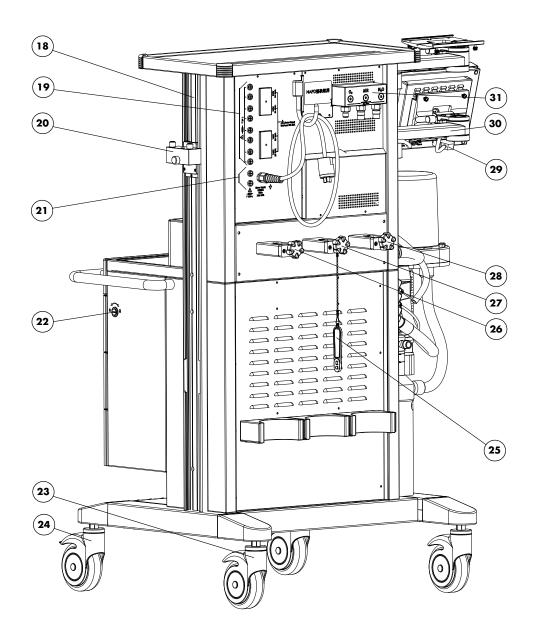


FIGURE 4-2 AS3000 Rearview

4.3.1.1 Chassis Parts List

FIG. NO.	DESCRIPTION	PART NUMBER
1	Arm, Monitor	0436-00-0248
2	User Interface Assembly	0997-00-0620 (M31) 021-000026-00 (M32) 115-005982-00 (M33)
3	Aux Gas Assembly	0997-00-0634
4	Channel, Left Side	0436-00-0250
5	Breathing System	115-005967-00
6	Absorber Canister Assembly	0997-00-0629 (original) 115-005724-00 (revised)
7	O ₂ Flush Valve Assembly	0104-00-0064
8	Scavenger System, AS3000	0992-00-0279
9	Drawer Assembly	0441-00-0206
10	Gauge, N ₂ O, Line Pressure	0118-00-0039
11	Gauge, AIR, Line Pressure	0118-00-0040
12	Gauge, O ₂ , Line Pressure	0118-00-0041
13	Gauge, N ₂ O High Pressure	0118-00-0042
14	Gauge, AIR High Pressure	0118-00-0036
15	Gauge, O ₂ High Pressure	0118-00-003 <i>7</i>
16	Switch, Mains (external) Switch, Mains (internal)	0261-00-0220 0261-00-0218
17	Vaporizer Mount	0997-00-0616
18	Rail, Right Side	0436-00-0251
19	Fuse, 2A, 250V	0159-00-0057
20	Vaporizer Storage Mount	0436-00-0221
21	Fuse, 10A, 250V	0159-00-0058
22	Lock, Key	0366-60-0137
23	Caster, without Brake	0401-00-0054
24	Caster, with Brake	0401-00-0053
25	Tank Wrench Assembly	0367-00-0080
26	Yoke, O ₂	0103-00-0676
27	Yoke, AIR	0103-00-0677
28	Yoke, N ₂ O	0103-00-0678
29	User Interface Cable	0012-00-1778
30	User Interface Mounting Arm	0436-00-0249
31	Gas Input Assembly	115-006314-00
NS	Kit Check Valve	0040-00-0458
NS Not Sho	wn	

4.3.2 Breathing System

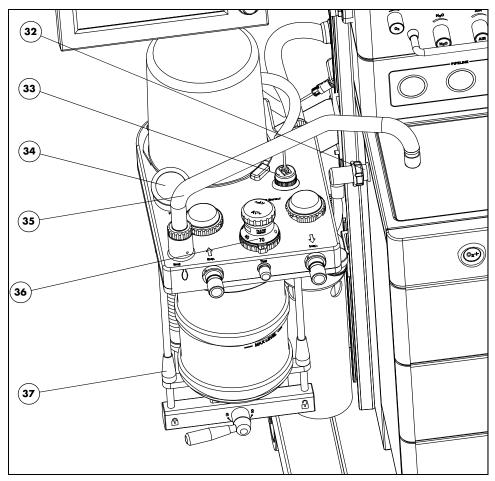


FIGURE 4-3 Breathing System, Top View

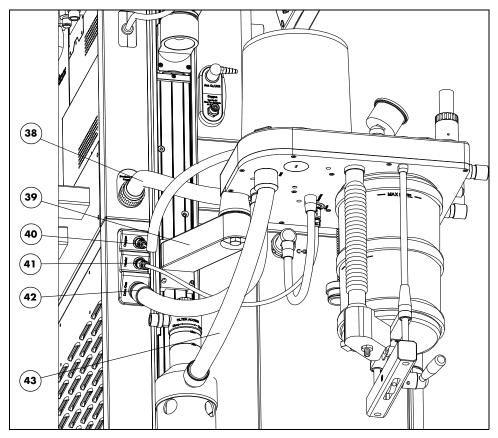


FIGURE 4-4 Breathing System Bottom View

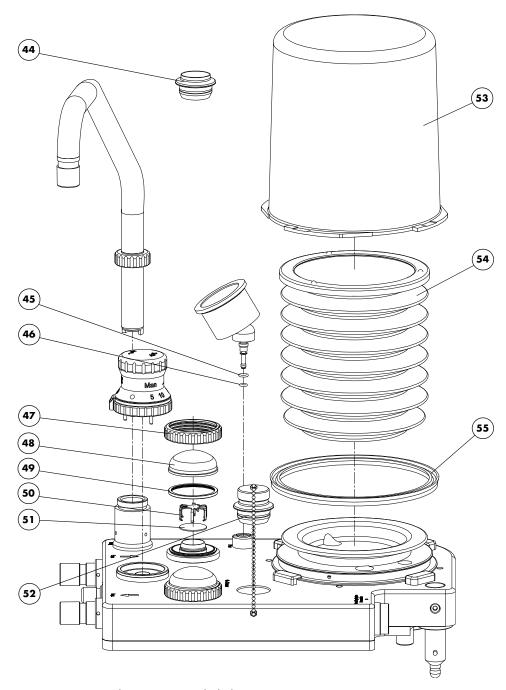


FIGURE 4-5 Breathing System Exploded Top View

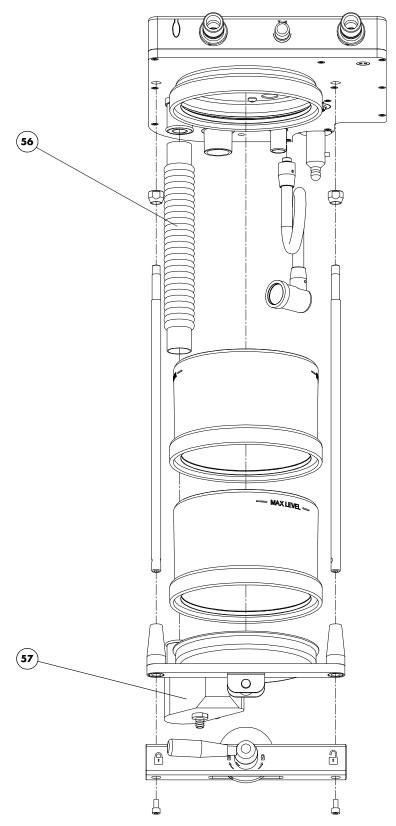


FIGURE 4-6 Breathing System Exploded Bottom View

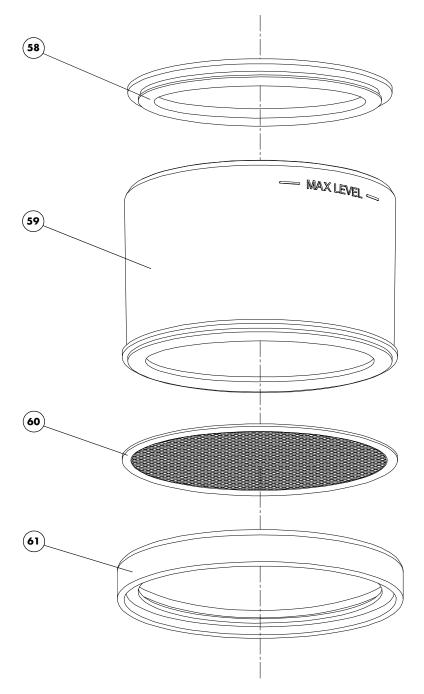


FIGURE 4-7 Absorber Canister Exploded View

4.3.2.1 **Breathing System Parts List**

FIG. NO.	DESCRIPTION	PART NUMBER
32	Common Gas Outlet Assembly	0997-00-0633
33	O ₂ Sensor	0600-00-0149
34	Airway Pressure Gauge	0118-00-0038
35	Bag Arm Tall	0009-00-0013
36	APL Valve	0104-00-0065
37	Absorber Canister Assembly	0997-00-0629 (original) 115-005724-00 (revised)
38	Breathing System Pneumatics Hose	082-000387-00
39	Breathing System Support Arm	0436-00-0253
40	O ₂ Sensor cable	0012-00-1775
41	Cable, Heater	0012-00-1780
42	Drive Gas Hose	0004-00-0098
43	AGSS Transfer Hose	0004-00-0095
44	O ₂ Sensor Interface	0198-00-0080
45	O Ring, 6 x 1.8	0354-00-0188
46	O Ring, 4 x 1.8	0354-00-0189
47	Ring, I/E Valve	0219-00-0018 (plastic)* 0219-00-0020 (metal)*
48	Cover, I/E Valves	0352-00-0068
49	Gasket, I/E Valves	0354-00-0192
50	Frame, I/E Valve	0352-00-0069
51	Disc, Ceramic I/E Valve	0354-00-0182
52	O ₂ Port Plug	0198-00-0083
53	Cover, Bellows	0198-00-0079
54	Bellows Assembly	115-005968-00
55	Gasket, Bellows Canister base	0354-00-0191
56	Absorber Hose	0004-00-0097
57	Absorber Mount Assembly	0436-00-0256
58	Absorber Gasket	0354-00-0199 (original) 047-002849-00 (revised)
59	Canister, Soda Lime	0352-00-0070 (original) 045-000254-00 (revised)
60	Absorber Screen, Metal	0378-00-0073
61	Absorber Canister Gasket	0354-00-0183 (original) 045-000252-00 (revised) 047-002850-00 (revised)
NS	Bag Arm Short	0009-00-0012
NS	Bellows Support Cage	082-000389-00
NS	Alignment Bracket Kit	115-007641-00

4.3.3 Electric Box

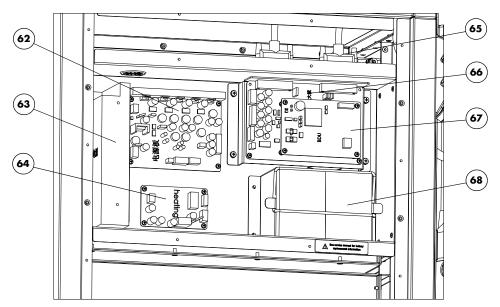


FIGURE 4-8 Electric Box Assembly

4.3.3.1 Electric Box Parts List

FIG. NO.	DESCRIPTION	PART NUMBER		
62	PC Board Assembly, Power	0671-00-0264 (M31) 051-000484-00 (M32) 051-000484-00 (M33)		
63	Power Supply, SNP-B209, Switching	0014-00-0091		
64	PC Board Assembly, Breathing System Heater	0671-00-0107		
65	Cable, Amp PC Board to Sensor PC Board	0012-00-1777		
66	PC Board Assembly, Amplifier	0671-00-0263		
67	PC Board Assembly, BDU	0671-00-0262 (M31) 051-000517-00 (M32) 051-000493-00 (M33)		
68	Battery Assembly SLA-5AH24V-3	0997-00-0619		

4.3.4 Gas Circuit Box

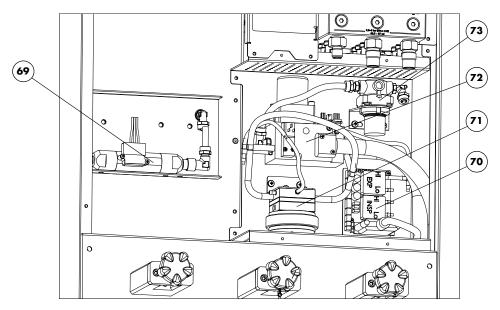


FIGURE 4-9 Gas Circuit Box Assembly

4.3.4.1 Gas Circuit Box Parts List

FIG. NO.	DESCRIPTION	PART NUMBER	
69	Electronic Flow Meter Assembly	0154-00-0010	
70	PC Board Assembly, Sensor	0671-00-0265	
71	PEEP Valve	0104-00-0062	
72	Gas Drive Module Assembly	0997-00-0632	
73	Valve, Pressure Reducer	0103-00-0681	
NS	Exhaust Gas Outlet Port	082-000681-00	
NS	Tube, Green, 6 mm OD, 4 mm ID	0008-00-0338	
NS	Tube, Green, 8 mm OD, 6 mm ID	0008-00-0337	
NS	Tube, Yellow, 6 mm OD, 4 mm ID	0008-00-0356	
NS	Tube, Blue, 6 mm OD, 4 mm ID	0008-00-0340	
NS	Tube, Black, 8 mm OD, 6 mm ID	0008-00-0358-15	
NS	Tube, Silicone, 20 mm OD, 15 mm ID	0008-00-0371	
NS	Tube, Silicone, 5 mm OD, 2 mm ID	0008-00-0370	
NS	Tube, Silicone, 8 mm OD, 4 mm ID	0008-00-0369	

4.3.5 User Interface

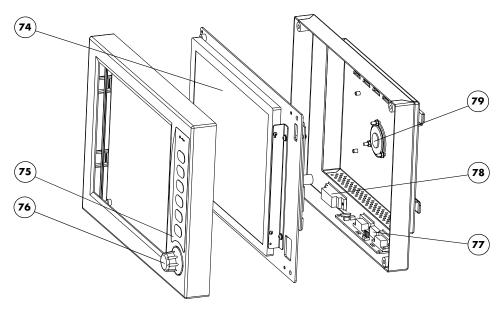


FIGURE 4-10 User Interface Assembly

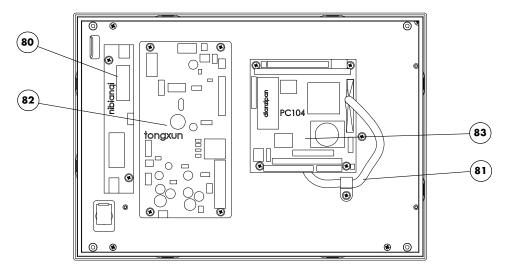


FIGURE 4-11 User Interface Rearview

4.3.5.1 User Interface Parts List

FIG. NO.	DESCRIPTION	PART NUMBER		
74	LCD Display	0160-00-0119		
75	Keypad Overlay	0331-00-0139		
76	Knob, Navigator™	0366-00-0136		
77	PC Board RS232	0671-00-0111		
78	Cable, Comm PC Board to Display Panel	0012-00-1774		
79	Speaker Assembly	0119-00-0230		
80	Inverter, LCD	0671-00-0112		
81	Cable, PC104 PC Board to Display	0012-00-1776		
82	Communications Board	0671-00-0109 (M31) 051-000483-00 (M32, M33)		
83	PC104 Board	0671-00-0276 (M31) 051-000518-00 (M32) 050-000359-00 (M33)		
	PC104 Board (old) *	N/A		
_	Display Assembly	0997-00-0620 (M31) 021-000026-00 (M32) 115-005982-00 (M33)		

^{*} The PC104 Board (old) is not available as an individual spare part. If replacement is required, the complete Display assembly will have to be replaced.

FIGURE 4-12 Old Style PC104 Board

FIGURE 4-13 Newer Style PC104 Board

4.3.6 Flowmeter

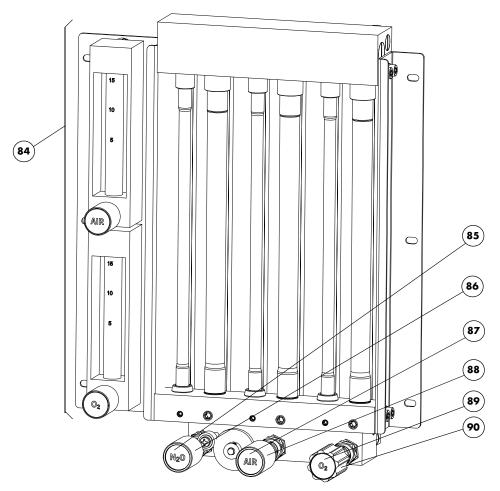


FIGURE 4-12 Flowmeter Module

4.3.6.1 Flowmeter Parts List

FIG. NO.	DESCRIPTION	PART NUMBER		
84	Flow Meter FM400 Assembly	0997-00-0617 (for -01 units) 115-005969-00 (for -02 units)		
85	Label, Flowmeter N ₂ O	0334-00-1780		
86	N ₂ O Knob	0366-00-0134		
87	Label, Flowmeter AIR	0334-00-1781		
88	AIR Knob	0366-00-0133		
89	Label, Flowmeter O ₂	0334-00-1779		
90	O ₂ Knob	0366-00-0135		
		•		

5.0 Calibration

5.1 Introduction

This section provides detailed information required to properly test and calibrate the **AS3000**. Calibration consists of making mechanical and electrical adjustments with the proper test equipment. The instrument should be tested and calibrated after repairs have been completed or at regular intervals as part of a periodic maintenance procedure.

NOTE: Both calibration and a functional test must be performed to

verify complete and proper operation.

NOTE: Calibration is conducted in normal operating mode and in

Service Diagnostic mode.

Ensure that all testing materials, including drive gas, breathing circuits, test fixtures, tools and documents are available and current, calibrated and in good working order prior to beginning.

Testing and programming requires utilizing internal service software. A password is required to enter these screens. This password is provided during biomedical technician training.

5.2 Calibration Warnings, Precautions, and Notes

5.2.1 **Warnings**

WARNING: For continued protection against fire hazard, replace all

fuses with the specified type and rating.

WARNING: In order to prevent an electric shock, the machine

(protection class I) may only be connected to a correctly grounded mains connection (socket outlet with grounding

contact).

WARNING: Remove all accessory equipment from the shelf before

moving the anesthesia machine over bumps or on any inclined surface. Heavy top loading can cause the machine

to tip over causing injury.

WARNING: Possible explosion hazard. Do not operate machine near

flammable anesthetic agents or other flammable

substances. Do not use flammable anesthetic agents (i.e.,

ether or cyclopropane.)

WARNING: The use of anti-static or electrically conductive respiration

tubes, when utilizing high frequency electric surgery equipment, may cause burns and is therefore not recommended in any application of this machine.

WARNING: Possible electric shock hazard. The machine may only be

opened by authorized service personnel.

WARNING: Compressed gasses are considered Dangerous Goods/

Hazardous Materials per I.A.T.A. and D.O.T. regulations. It is a violation of federal and international law to offer any

package or over pack of dangerous goods for transportation without the package being appropriately identified, packed, marked, classified, labeled and documented according to D.O.T. and I.A.T.A. regulations. Please refer to the applicable I.A.T.A. Dangerous Goods Regulations and /or the Code of Federal Regulations 49

(Transportation, Parts 171-180) for further information.

5.2.2 **Cautions**

CAUTION: Refer to the "Periodic Maintenance Schedule of Service

Activities" on page 6-2, in the Periodic Maintenance section for assistance when performing scheduled periodic

maintenance.

CAUTION: Do not leave gas cylinder valves open if the pipeline supply

> is in use and the system master switch is turned to 'ON'. If used simultaneously, cylinder supplies could be depleted, leaving an insufficient reserve supply in the event of

pipeline failure.

CAUTION: Use cleaning agent sparingly. Excess fluid could enter the

machine, causing damage.

CAUTION: This machine must only be operated by trained, skilled

medical staff.

5.2.3 Notes

NOTE: Only bacterial filters with a low flow resistance must be

connected to the patient module and/or the patient

connection.

NOTE: Use surgical gloves whenever touching or disassembling

valves or other internal components of the Breathing

System.

NOTE: Ensure that the gas supply of the machine always complies

with the technical specification.

NOTE: The APL Valve and PAW gauge numerics are for reference

only. Calibrated patient airway pressure is available on the

ventilator screen.

NOTE: If the machine should show faults during the initial

calibration or testing, the machine should not be operated until the fault has been repaired by a qualified service

technician.

NOTE: After servicing, functional, sensor and system tests must be

carried out before clinical use.

NOTE: To accommodate additional monitors and other equipment

the AS3000 offers up to two vertical mounting tracks. Use of unauthorized mounting accessories is not recommended.

NOTE: Always secure any equipment placed on the AS3000's top

shelf.

General Guidelines Calibration

5.3 General Guidelines

1. Before disconnecting any pneumatic hoses, the hoses and mating fittings should be tagged to show the proper connections. When reconnecting, all hoses must be checked for proper connection. To further assure proper connection, all pneumatic calibrations and tests defined in this manual should be accomplished before use on a patient.

- 2. Once the instrument covers have been removed, an electric shock hazard may exist. Therefore, calibration should only be performed by qualified service personnel who proceed with care and follow proper servicing techniques.
- **3.** Do not attempt to calibrate the instrument without the test equipment and tools listed in this manual.
- Exercise care when reaching into the opened instrument which contains line (mains) voltage.
- 5. When making adjustments and measurements, avoid accidental shorting of component leads that can result in component failure.
- 6. Perform all steps in the order given. Do not skip any steps unless noted.
- 7. Understand each step of the procedure thoroughly before performing the procedure.
- **8.** Before removing or replacing any circuit boards, disconnect the **AS3000** from line power, switch the Mains Switch to the OFF position, and disconnect the negative terminal from the battery.

5.4 Test Equipment and Special Tools Required

See "Special Tools Required" on page 3-3, for a list of tools required for calibration.

5.5 Calibration Procedures

NOTE: The following calibration procedures must be performed in

5.5.1 Oxygen Sensor Calibration

NOTE: See "Periodic Maintenance Schedule of Service Activities" on page 6-2 for when to calibrate the oxygen sensor.

1. Preparing the unit

- **a.** Allow the breathing system to warm up and reach thermal equilibrium (approximately 30-60 minutes).
- **b.** In Standby mode, press the **MENU** button. The menu screen will appear.
- **c.** Select **Service**, then input the password **2010** to enter the Service screen.
- d. Select Calibration to enter the Calibration screen.
- e. Select Oxygen Sensor to enter the Oxygen Sensor Calibration screen.

2. Calibration

NOTE: Do not shake the O₂ sensor during calibration.

NOTE: During calibration, keep the O₂ sensor in a vertical position, connector side up, and bottom side exposed to room air; keep the O₂ sensor near the heated block to minimize the temperature difference from within the heated block.

Calibration Calibration Procedures

NOTE: If the system is going to be used during the calibration, insert the O₂ cell plug into the port from which the oxygen sensor was removed using a push and turn motion.

- **a.** Select **21%** to enter the 21% oxygen concentration calibration screen.
- **b.** Remove the oxygen sensor from the Breathing System and expose it to room air for at least 3 minutes.
- c. Flush the O₂ sensor with air from the auxiliary output for 5-10 seconds to ensure that no O₂ bubbles are trapped in the sensor.
- **d.** Select **Next** to start 21% oxygen concentration calibration.

NOTE: The O₂ sensor voltage is displayed during the calibration. This is the amplified O₂ cell voltage at the A/D converter for the oxygen sensor. The O₂ sensor voltage is not displayed for UI versions 2.24 and lower.

e. When calibration is successfully completed, install the oxygen sensor into the Breathing System.

NOTE: The oxygen sensor must be installed in the Breathing
System for 10 minutes prior to 100% oxygen concentration
calibration to adjust to the temperature of the system.

- f. Press the O₂ Flush button for 5-10 seconds to clear out any non-O₂ gases from the system.
- g. Expose the oxygen sensor to 100% pure oxygen (5 L/min) for at least 3 minutes.
- h. Select 100% to enter the 100% oxygen concentration calibration screen.
- i. Select **Next** to start 100% oxygen concentration calibration.

Calibration Procedures Calibration

5.5.2 Proportional Valve Regulator Calibration

- 1. Open the gas cover panel.
- 2. Remove the drive pressure source from the AS3000.
- 3. Disconnect the input hose from the Proportional Valve.
- 4. Connect a Digital Pressure Meter to the proportional valve input hose.
- 5. Reconnect the drive pressure source to the AS3000.
- **6.** Set the pressure on the pressure regulator to between 25.1 and 25.7 psi by pulling down on the pressure regulator knob and rotating it until the desired pressure is reached. (see FIGURE 5-1)
- 7. Push the regulator knob back up once the desired pressure is reached to lock it in place.
- 8. Remove the drive pressure source from the AS3000.
- **9.** Remove the Pressure Meter and reconnect the input hose to the Proportional Valve.
- 10. Reconnect the drive pressure source to the AS3000.

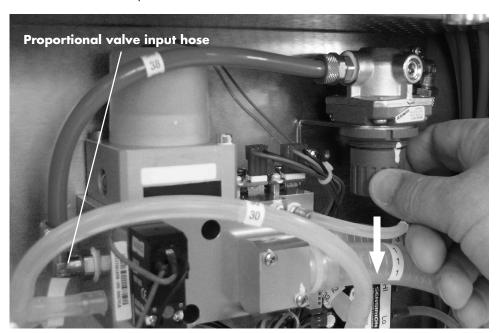


FIGURE 5-1 The Proportional Valve Regulator

Calibration Calibration Procedures

5.5.3 Flow Sensor Calibration

1. Preparing the unit

FIGURE 5-3 Blocking the Bag Port

- **a.** Remove the Inspiratory and Expiratory valve disks, and reinstall the valve covers.
- **b.** Connect a Respiration Tube between the Inspiratory and Expiratory Ports. (see FIGURE 5-2)
- c. Use the AS3000 Test Plug to block the Bag Port. (see FIGURE 5-3)
- **d.** Set the APL Valve to $70 \text{ cmH}_2\text{O}$.
- **e.** With the Fresh Gas flow set to 100 mL/min, press the O₂ Flush button. Verify that the Paw gauge reads a minimum of 40 cmH₂O after releasing the button.
- f. If 40 cmH₂O cannot be attained, open and close the APL Valve and repeat step e prior to leakage troubleshooting.
- g. Set the Fresh Gas flow to 0 mL/min.
- h. Select Continue.

Calibration Procedures Calibration

2. Calibration

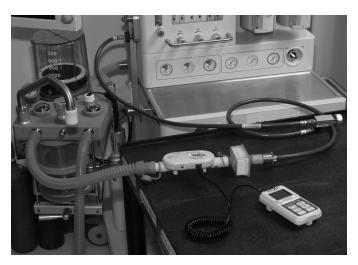


FIGURE 5-4 Connecting the Vent Tester to the AS3000

- a. Connect one end of the Calibration Hose to the High Pressure port on the AS3000 and the other to the inlet on the Vent Tester.
- **b.** Connect one end of the Respiration Tube to the expiratory port on the **AS3000** and the other to the outlet of the Vent Tester.
- c. Connect an unterminated tube (at least 1 meter long) to the inspiratory port on the AS3000.
- d. Select Continue to start calibration.
- e. Ensure that there is 0 flow on the Flow Analyzer.
- **f.** Set the on screen calibration to **0**, and select **Done** to begin calibration. Successful calibration will be confirmed by illuminating the corresponding calibration value yellow. If the calibration value illuminates red, recalibrate the value until it successfully calibrated.
- **g.** Set the onscreen calibration value to 1.
- h. Raise the flow until it reads 1.00 on the Flow Analyzer using the calibration hose valve
- i. Select **Done** to begin calibration.
- **j.** Repeat steps **g.** through **i.** for all calibration values listed on the screen. Ensure all successfully calibrate and illuminate yellow.
- k. After all values are successfully calibrated select Finish Cal.
- 1. The AS3000 will confirm that calibration was successfully completed.
- m. Select **Done** to return to the calibration screen.

NOTE: The flow should not be fluctuating in during the calibration.

Calibration Calibration Procedures

5.5.4 Flow Valve Calibration

1. Preparing the unit

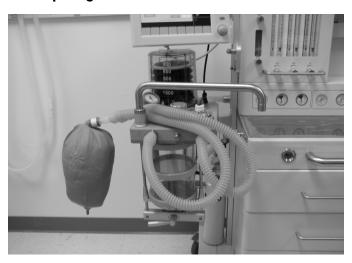


FIGURE 5-5 Connecting the breathing circuit

- a. Reinstall the Inspiratory and Expiratory valve disks.
- **b.** Connect a breathing circuit to the Breathing System (see FIGURE 5-5).
- c. Connect a 3L bag to the Y-fitting.

NOTE: A 2.3L bag can be used in place of a 3L bag.

d. Select Continue.

2. Calibration

- \mathbf{a} . Press the O_2 Flush Valve to fully fill bellows.
- **b.** Select **Continue** to start calibration.
- c. Follow the on-screen instructions.

NOTE: The flow Valve calibration duration is approximately 5 minutes.

Calibration Procedures Calibration

5.5.5 Paw Sensor

1. 0 cmH₂O Calibration

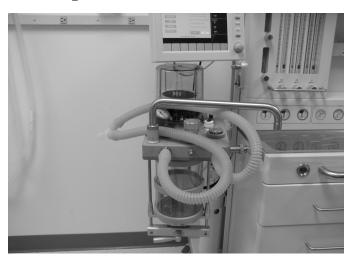


FIGURE 5-6 Removing the 3L bag

- ${\bf a.}\,$ Remove the 3L bag from the breathing circuit.
- **b.** Set the APL Valve to $\mathbf{0}$ cmH $_2$ O.
- **c.** Select **Continue** to start calibration.
- **d.** Follow the on-screen instructions.

Calibration Calibration Procedures

2. 30 cmH₂O Calibration

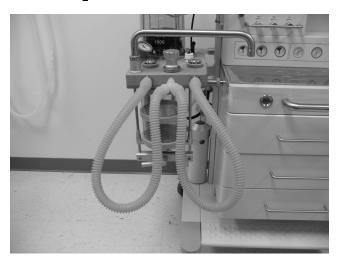


FIGURE 5-7 Connecting the Y-fitting to the Test Port

- **a.** Set the APL Valve to $30 \text{ cmH}_2\text{O}$.
- **b.** Connect the Y-fitting to the Test Port (see FIGURE 5-7)
- c. Connect a Pressure Meter between the Y-fitting and the AS3000 (use an adapter if necessary).
- **d.** Use the O_2 Flush Valve and O_2 Flow Meter to maintain pressure at 30.0 ± 0.2 cmH $_2$ O on the Pressure Meter.
- e. Select Continue to start calibration.
- f. Follow the on-screen instructions.

5.5.6 PEEP Valve

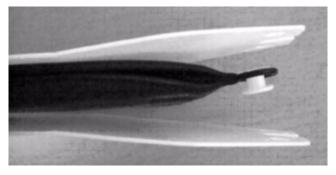


FIGURE 5-8 Disconnect the plastic flaps from the Adult Test Lung

1. Calibration

- **a.** Disconnect the plastic flaps from the Adult Test Lung (P/N 0138-00-0012) and connect it to the Y-fitting.
- **b.** Set the Fresh Gas flow to 0 mL/min.
- c. Press the O2 Flush Valve to fully fill bellows.
- d. Select Continue to start calibration.
- e. Follow the on-screen instructions.

Calibration Procedures Calibration

5.5.7 Flow Meter

1. Calibration

FIGURE 5-9 Connecting the Flow Analyzer

- a. Connect one end of the Respiration Tube to the Common Gas Outlet on the A\$3000, and the other to the inlet on the Flow Analyzer (Certifier-FA PLUS).
- **b.** Set the Fresh Gas flow to 0 mL/min.
- c. Select Continue to start calibration.
- **d.** Ensure that there is 0 flow on the Flow Analyzer.
- **e.** Set the on screen calibration to **0**, and select **Done** to begin calibration. Successful calibration will be confirmed by illuminating the corresponding calibration value yellow. If the calibration value illuminates red, recalibrate the value until it successfully calibrated.
- f. Set the onscreen calibration value to 1.
- g. Raise the flow until it reads 1.00 on the Flow Analyzer using the Flow Meter.
- **h.** Select **Done** to begin calibration.
- Repeat steps f. through h. for all calibration values listed on the screen. Ensure all successfully calibrate and illuminate yellow.
- j. After all values are successfully calibrated select Finish Cal.
- **k.** The **AS3000** will confirm that calibration was successfully completed.
- **I.** Select **Done** to return to the calibration screen.

NOTE: When calibrating the Flow Meter, use AIR if available, otherwise use a combination of O_2 and N_2O to attain a flow of 15 L/min.

Calibration Calibration Procedures

5.5.8 Leakage detection

5.5.8.1 Startup leakage detection

After restarting, select **Continue** to enter the Leakage Detection screen. Connect the Yfitting to the **AS3000**'s Test Port, and use the **AS3000** Test Plug to block the Bag Port. Adjust the APL Valve to **30** cmH₂O and close the Flowmeter. Then, select **Continue** to prompt to the next screen.

5.5.8.2 APL Valve leakage detection

Follow the on-screen instructions and use the O_2 flush valve to pressurize the system. Ensure that the bellows does not move while pressurizing the system. Meanwhile, observe the pressure gauge to ensure that the pressure exceeds 30 cmH₂O. Release the O_2 Flush Valve and observe whether the pressure displayed on pressure gauge stays within 25 - 35 cmH₂O. After passing the test, select **Continue** to prompt to the next screen.

5.5.8.3 Safety Valve leakage detection

The Safety Valve leak detection test will start automatically. After finishing, the result of the test will be displayed on the screen. After passing the test, select **Continue** to prompt to the next screen.

5.5.8.4 Breathing System leakage detection

Use the O_2 Flush Valve to fill the bellow full with oxygen according to the prompt on the screen. Select **Continue** to start the test. After finishing, the results of the test will be displayed on screen. Leakage detection must be less than 400 mL/min. After passing the test, select **Continue** to prompt to the next screen.

5.5.9 Compliance detection

Adjust the O_2 Flowmeter to make the flow equal to 5 ± 0.1 L/min according to the prompt on the screen. Select **Continue** to start the Compliance Detection test. After finishing, the results of the test will be displayed on screen. Compliance detection must be within 1 - 11 mL/cmH $_2$ O. After finishing compliance detection successfully, select **Continue** to enter Standby Screen.

Calibration Procedures Calibration

This page intentionally left blank.

5 - 14 0070-10-0683 A\$3000™ Service Manual

6.0 Periodic Maintenance

6.1 Maintenance Schedule

The following is a list of activities required for periodic maintenance of the **A53000** Anesthesia System. Physical inspection, replacement of consumables and performance checks should be periodically performed per the schedule listed below. Certain calibration adjustments are required only after replacing one or both of the active devices. The manufacturer is not responsible for component failure or loss resulting from the use of stated consumables beyond their recommended replacement interval. These are noted in the Periodic Maintenance Schedule (See section 6.3).

6.2 Periodic Maintenance Consumable Parts Kits

Consumable parts are available in the PM kits listed below.

- AS3000, 12-Month PM Kit: 0040-00-0446
- AS3000, 36-Month PM Kit: 0040-00-0445

Parts must be replaced at periodic intervals according to the schedule.

6.3 Periodic Maintenance Schedule of Service Activities

REQUIRED ACTION	AFTER EACH SERVICE	EVERY 12 MONTHS	EVERY 36 MONTHS	ADDITIONAL INFORMATION
Check list before surgery		Χ	Χ	
Visual Inspection Checklist		Х	Х	
Replace of Consumable Parts		Х	Х	
Battery Maintenance and Replacement			Х	
Functional Tests		Х	Х	
Preoperative Checklist	Х	Х	Х	
O ₂ Sensor Calibration: 21%	Х			User to calibrate every 3 days. Service to calibrate after initial installation, and after replacing the O ₂ sensor.
O ₂ Sensor Calibration: 100%	Х			Service to calibrate after initial installation, and after replacing the O_2 sensor.

6.4 Visual Inspection Checklist

- 1. Verify that the AS3000 has no physical damage that would prevent operation.
- 2. Verify that the breathing circuit and CO₂ absorbent are present.
- **3.** Verify that the vaporizers are filled but not overfilled.
- 4. Verify that the Preoperative Checkout List is attached.
- 5. Verify that the tank wrench is attached. (0367-00-0080)
- **6.** Verify that the waste gas scavenger hose to the APL Valve (0004-00-0095) is not damaged. Drain any moisture.
- **7.** Verify that the O₂, N₂O, AIR, VAC and EVAC Supply Hoses (as applicable) are not damaged.
- **8.** Verify that the AC line cord is not frayed or damaged.

6.5 Replacement of Consumable Parts

Parts are replaced at multiple intervals from the date of installation.

	CONSUMABLE PARTS	AMOUNT	12 MONTH PM	36 MONTH PM	PART NUMBER
1	O ₂ Sensor	1	check	check	0600-00-0149
2	Battery Assembly SLA-5AH24V	1	check	replace	0997-00-0619
3	Drive Gas Tube	1	check	replace	0004-00-0098
4	Bellows Assembly	1	replace	replace	115-005968-00
5	Scavenger Hose	1	check	replace	0004-00-0095
6	I/E Valve gasket	2	replace	replace	0354-00-0192
7	O-ring, 6 x 1.8 (for airway pressure gauge)	1	replace	replace	0354-00-0188
8	O-ring, 4 x 1.8 (for airway pressure gauge)	1	replace	replace	0354-00-0189
9	Bag Arm retainer ring	1	check	check	0354-00-0039
10	Disc, Ceramic I/E Valve	2	check	replace	0354-00-0182
11	Gasket, Bellows canister base	1	replace	replace	0354-00-0191
		3	check	replace	0354-00-0183 (original)
12	Absorber canister Seal	1 2	check check	replace replace	047-002850-00 (revised) 047-000252-00 (revised)
13	O-ring O ₂ Interface / O ₂ Plug	2	replace	replace	0354-00-0187
14	O-ring Vaporizer mount 14x2.65	4	replace	replace	0354-00-0193
15	Cylinder Washer, Black	3	replace	replace	0348-00-0185
16	Absorber assembly	1	clean	clean	0997-00-0629 (original) 115-005724-00 (revised)
17	AGSS filter	1	clean	replace	0378-00-0074
18	Absorber Gasket	2	clean	replace	0354-00-0199 (original) 047-002849-00 (revised)
19	Check Valve (Applicable to original model P/N 0997-00-0618 only. See "Check Valve Cleaning" on page 6-4.)	1	clean	clean	Non-replaceable
20	User Interface cable jackscrews and jackposts	2	Check for Loctite 243 and apply if necessary. Verify jackscrews are secured tightly.	Check for Loctite 243 and apply if necessary. Verify jackscrews are secured tightly.	Non-replaceable

Check Valve Cleaning Periodic Maintenance

6.6 Check Valve Cleaning

Check valve cleaning is applicable only the original beathing system model (P/N 0997-00-0618) only. It does not need to be performed on the revised beathing system model (P/N 115-005967-00) (see FIGURE 6-1).

Constant contact with moist patient gas can result in the breathing system check valve becoming sticky. Cleaning the check valve will resolve this issue. Perform this cleaning procedure at least every 12 months.

NOTE: Plastic gloves should be worn when handling breathing systems

FIGURE 6-1 Breathing System Styles

6.6.1 Tools and Materials

- Philips screw driver
- 2.5 mm hex wrench
- 3 mm hex wrench
- 4 mm hex wrench
- 12 mm standard socket
- 13 mm open end wrench
- Silicone Lubricant (PN 0510-00-0021)
- Tape measure (metric)
- Loctite 243
- Isopropyl alcohol

Periodic Maintenance Check Valve Cleaning

6.6.2 Cleaning Procedure

1. Remove Absorber Locking Mechanism and Absorber Mount Assembly:

- 1. Rotate the cam handle to the unlocked position.
- 2. Remove (2) Absorber Canister Assemblies.
- 3. Remove Absorber Hose from port on Absorber Mount Assembly.
- **4.** Remove (2) 4mm hex screws securing the Absorber Locking Mechanism to the rods.
- 5. Remove the Absorber Locking Mechanism and Absorber Mount Assembly.

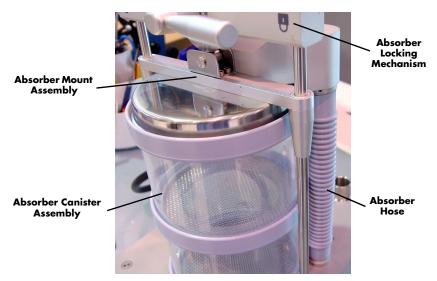


FIGURE 6-2 Absorber Assembly

Check Valve Cleaning Periodic Maintenance

2. Remove Absorber Guide Rods and Mounting Plate:

- 1. Loosen the locking nuts on (2) Absorber Guide Rods.
- 2. Remove the (2) Absorber Guide Rods by unscrewing them from the Breathing System Block.
- 3. Remove Gasket and Screen from Absorber Mounting Plate.
- **4.** Remove (3) philips head screws with (3) associated washers securing the Absorber Mounting Plate.
- 5. Remove the Absorber Mounting Plate

FIGURE 6-3 Absorber guide rods and mounting plate

Periodic Maintenance Check Valve Cleaning

3. Remove Breathing System parts:

- **1.** Remove the following parts from the Breathing System:
 - APL Valve
 - Breathing Circuit
 - Manual Bag
 - Bag Arm
 - Bellows Cover
 - Airway Pressure (PAW) Gauge
 - Bellows
 - Bellows Cover Base Gasket
 - O2 Sensor Assembly
 - Inspiratory Check Valve Assy
 - Drive Gas Tube
 - CGO Hose
 - Heater Cable
 - Pneumatc Hose
 - Scavenger Hose
 - Bellows Support Cage (if available)

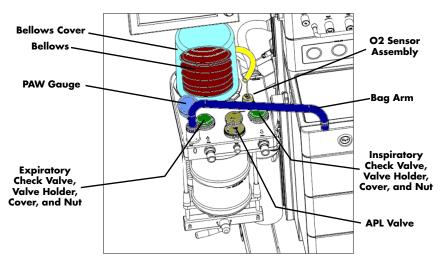


FIGURE 6-4 Breathing System

Check Valve Cleaning Periodic Maintenance

4. Remove Breathing System bottom block:

- 1. Remove (15) 3mm hex screws securing the bottom block of the Breathing System. Save the screws.
- 2. Remove the bottom block of the Breathing System by inserting a standard 12mm socket into the Absorber Port to hold down the block. Pull the installed Absorber Hose Port to separate bottom block.
- **3.** Remove the 12mm socket from the Breathing System.

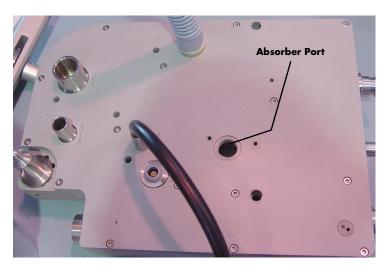


FIGURE 6-5 Absorber port

6 - 8 0070-10-0683 AS3000™ Service Manual

Periodic Maintenance Check Valve Cleaning

5. Remove and clean check valve:

- **1.** Using needle nose pliers, remove the bellows check valve by gently inserting into round holes, then prying loose.
- 2. Separate valve holder, check valve and valve seat.
- **3.** Clean check valve, valve seat, and valve holder using a cloth or equivalent moistened with isopropyl alcohol .
- 4. Re-assemble check valve, valve seat, and valve holder.
- 5. Apply silicone lubricant PN 0510-00-0021 to valve seat o-ring.
- **6.** Gently re-install bellows check valve assembly into port, assuring that there is no damage to the o-ring. Push down until it bottoms out.

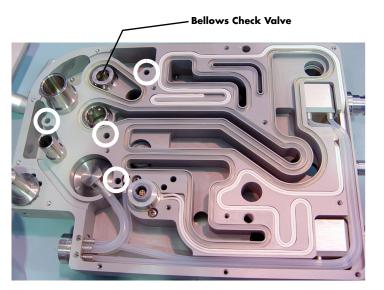


FIGURE 6-6 Bellows check valve

Check Valve Cleaning Periodic Maintenance

6. Inspect gaskets and secure bottom block:

- 1. Inspect all internal gaskets and make sure they are seated properly.
- **2.** Secure the bottom block with the original (15) 3mm hex screws:
 - Loosely install all (15) screws
 - Tighten the screws using the numbered sequence shown below.

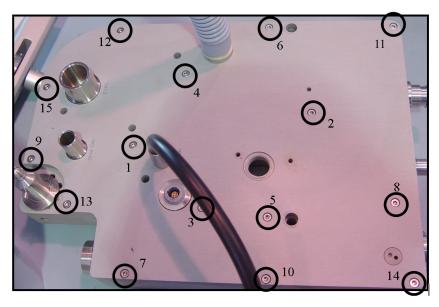


FIGURE 6-7 Bottom block screws

6 - 10 0070-10-0683 AS3000™ Service Manual

Periodic Maintenance Check Valve Cleaning

7. Install absorber canister assembly:

- 1. Apply Loctite 243 to (3) screws of the Absorber Mounting Plate.
- 2. Secure mounting plate to Breathing System Block using (3) screws and (3) associated washers.
- 3. Apply Loctite 243 to the threads of (2) Absorber Guide Rods.
- **4.** Install rods into block until rod height is 314 +/- 0.5 mm (old style breathing systems) or 303+/-0.25 mm (new style breathing systems) (see FIGURE 6-9).

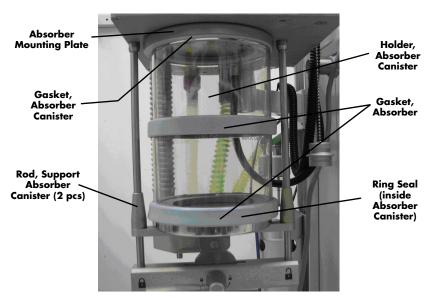


FIGURE 6-8 Absorber Canister Assembly

FIGURE 6-9 Breathing System Styles

Check Valve Cleaning Periodic Maintenance

8. Secure rods and install final assembly:

- Both rods must be equal in height.
 Secure rods by tightening the locking nuts.
- 2. Install an Absorber Gasket and a Screen onto the Absorber Mounting Plate.
- **3.** Insert Absorber Mount Assembly onto guide rods, noting the position of the Absorber Hose Port and Absorber Hose.
- 4. Install Absorber Hose onto Absorber Hose Port.
- **5.** Install Absorber Locking Mechanism onto guide rods, noting the silk screening must face the front of the block. When assembling, put the locking mechanism lever in the "locked" position.
- 6. Secure the locking mechanism using the (2) original 4mm hex screws. Install the two Absorber Canister Assemblies.
- **7.** Measure the distance between the absorber mount assembly plate at four different points. The difference in length should not be more than 1 mm.

9. Perform tests on the check valve:

1. Perform "Start-Up Tests" on page 6-15 and "Performance Verification" on page 6-27.

6 - 12 0070-10-0683 AS3000™ Service Manual

6.7 Battery Maintenance and Replacement

6.7.1 Battery Maintenance

- 1. The **AS3000** uses a sealed lead-acid battery. Due to the self-discharge characteristics of this type of battery, it is imperative that it is charged after 3 months of storage (or after extended periods of non-use). If not charged, a permanent loss of capacity may occur as a result of sulfation.
- 2. Check the battery run time every 12 months.
- **3.** Replace batteries when operating time is less than 30 minutes or when the battery is 3 years old.

NOTE: The sealed lead-acid batteries used in the system are maintenance free. They will perform reliably provided that they are kept in the charged state.

4. Disposal of batteries should be conducted in accordance with local recycling statues and labeling shown on the battery pack.

6.7.2 Battery Replacement

- 1. Open the access door located at the rear of the AS3000.
- 2. Disconnect the battery connections.
- **3.** Remove the old battery.
- Ensure the new battery is electrically connected and secured in the same manner as the original one.
- **5.** Close the access door.
- 6. Use only Approved Batteries (P/N 0997-00-0619).

6.8 Functional Tests

Refer to "Calibration" on page 5-1 if any values are out of specification.

6.8.1 Test Equipment and Special Tools Required

Refer to "Special Tools Required" on page 3-3 for a list of tools required for Running the functional tests.

Functional Tests Periodic Maintenance

6.8.2 Pressure Regulator Checks

6.8.2.1 Proportional Valve Regulator

- 1. Open the gas cover panel.
- 2. Remove the drive pressure source from the AS3000.
- 3. Disconnect the input hose from the Proportional Valve.
- 4. Connect a Digital Pressure Meter to the proportional valve input hose.
- 5. Reconnect the drive pressure source to the **AS3000**.
- 6. Verify the pressure displayed on the Pressure Meter is between 23.9 and 26.8 psi.
- 7. Remove the drive pressure source from the AS3000.
- 8. Remove the Pressure Meter and reconnect the input hose to the Proportional Valve.
- 9. Reconnect the drive pressure source to the AS3000.

NOTE: If the proportional Valve Regulator is out of specification, calibration is required.

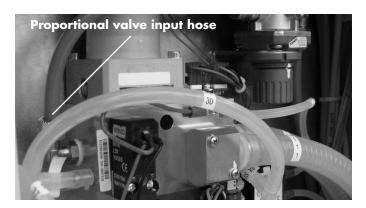


FIGURE 6-10 The Proportional Valve Regulator

6.8.3 Gas Delivery System Tests

6.8.3.1 O₂ Flush Verification

- 1. Attach the Digital Flow Meter to the Common Fresh Gas Outlet.
- **2.** Verify that the O_2 flush flow is between 35 to 50 L/min when pressing the O_2 flush valve.

Periodic Maintenance Functional Tests

6.8.3.2 O₂:N₂O Ratio System

For -01 units:

- **1.** Set the O_2 and N_2O Flow Control Valves to minimum.
- **2.** Rotate the N_2O Flow Control Valve until the top of the O_2 flow meter's float rises to 1L/min.
- **3.** Verify that the N_2O flow is not higher than 3.7 L/min.
- **4.** Lower the N_2O flow to minimum.

For -02 units:

- 1. Set all flow control knobs to minimum.
- **2.** Set the flow of O_2 to 1 L/min.
- **3.** Open the N_2O flow knob and verify that the N_2O flow will not increase higher than 3.7 L/min.
- 4. Return flow control knobs to minimum.

6.8.4 Start-Up Tests

6.8.4.1 System Self Test.

- 1. Power ON the **AS3000**.
- 2. Wait until the System Self Test is complete

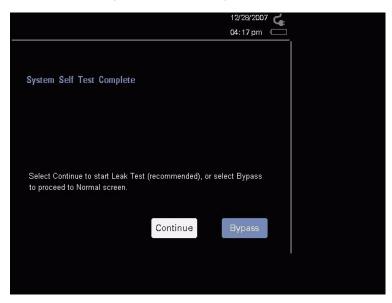


FIGURE 6-11 Startup Self Test

3. Press Continue to prompt to the Safety Valve Test

6.8.4.2 Leak/Safety Valve Test

1. Follow the on-screen instructions.

Functional Tests Periodic Maintenance

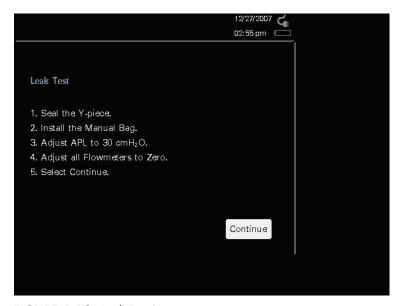


FIGURE 6-12 Leak Test Setup

2. Select Continue to start the test.

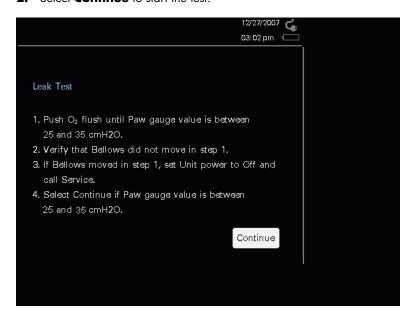


FIGURE 6-13 Safety Valve Test Setup

6 - 16 0070-10-0683 AS3000™ Service Manual

Periodic Maintenance Functional Tests

FIGURE 6-14 Safety Valve Test in Progress

FIGURE 6-15 Safety Valve Test Passed Message

3. After 3 seconds, the screen will prompt to the Leak Test.

6.8.4.3 Leak Test

1. Follow the on-screen instructions.

2. Select Continue to start the test.

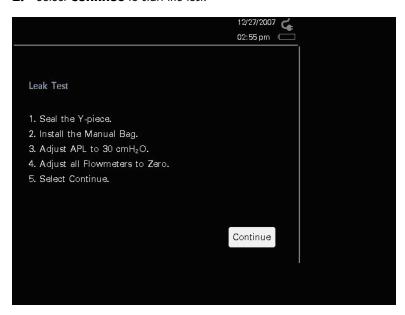


FIGURE 6-16 Leak Test Setup

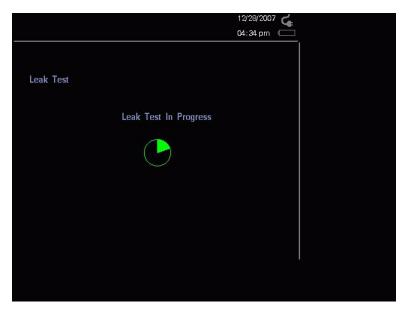


FIGURE 6-17 Leak Test in Progress

6 - 18 0070-10-0683 AS3000™ Service Manual

3. Select **Continue** to prompt to the Compliance Test.

FIGURE 6-18 Leak Test Results

6.8.4.4 Compliance Test

- 1. Follow the on-screen instructions.
- 2. Select Continue to start the test.

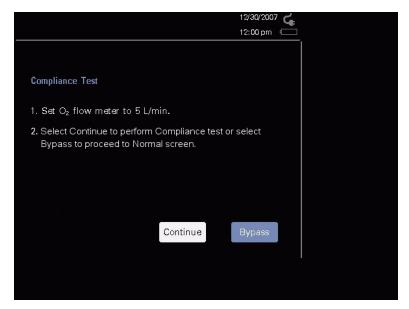


FIGURE 6-19 Compliance Test Setup

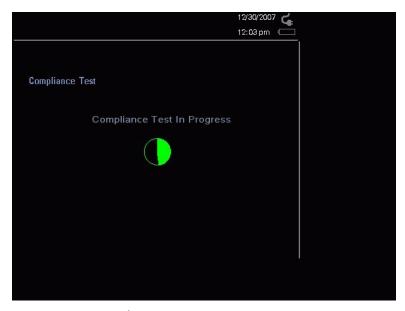


FIGURE 6-20 Compliance Test in Progress

6 - 20 0070-10-0683 AS3000™ Service Manual

3. Select Continue to prompt to the Normal Screen.

FIGURE 6-21 Compliance Test Results

6.8.4.5 Manual Leak Test

NOTE: The Manual Leak Test detects smaller leaks than can be detected in the Automatic Leak Test.

- 1. Ensure that the gas pressure for O_2 , N_2O , and AIR are at 50 ± 10 psi.
- 2. Power ON the **AS3000**.
- 3. Attach a reusable-silicone-rubber breathing circuit to the Breathing System.

NOTE: For testing purposes always use a reusable breathing circuit.

- **4.** Tightly connect the Y-fitting on the breathing circuit to the test port.
- 5. Attach a breathing bag to the bag arm.
- **6.** Set the APL Valve to the fully closed position (**70** cmH₂O).
- **7.** Rotate the O₂ Flow Control Valve until 50 cmH₂O pressure is observed on the Airway Pressure Gauge.
- **8.** Verify that the flow required to stabilize the pressure is less than 300 mL/min.

6.8.4.6 Oxygen Sensor Calibration

NOTE: Oxygen Sensor Calibration can be performed in all ventilation modes.

1. Press the **MENU** key and then use the **Navigator[™] Knob** to scroll to the **Calibrate** menu tab (see FIGURE 6-22). Select the **Start Calibration** button.

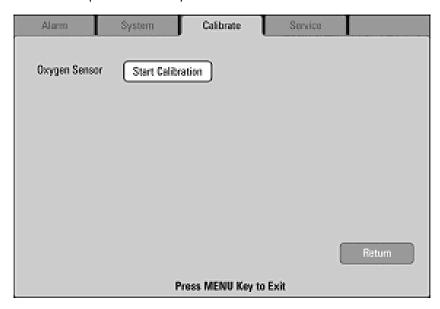


FIGURE 6-22 Calibrate Menu Tab

2. After the **Start Calibration** button has been selected, the screen shown in FIGURE 6-23 will be displayed, instructing the user to remove the oxygen sensor from the Breathing System and expose it to room air for at least 3 minutes before proceeding. After at least 3 minutes have passed, select the **Next** button to initiate the calibration process. The progress bar shown in FIGURE 6-24 will be displayed.

NOTE: If the system is going to be used during the calibration, insert the O₂ cell plug into the port from which the oxygen sensor was removed using a push and turn motion.

6 - 22 0070-10-0683 AS3000™ Service Manual

Remove the oxygen sensor from the breathing system. Expose the sensor to room air for at least three minutes before proceeding.

O2 Sensor: 0.235 V

Cancel Next

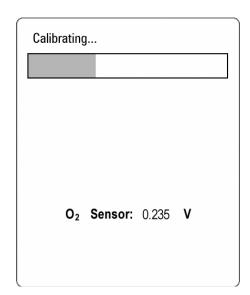


FIGURE 6-23 Oxygen Sensor
Calibration Instructions

FIGURE 6-24 Oxygen Sensor Calibration Progress Bar

- **3.** Proceed based on one of the following two conditions:
- If the calibration is successful, the screen shown in FIGURE 6-25 will be displayed, instructing the user to reinstall the oxygen sensor into the Breathing System. Select the **Done** button to complete the process.
- If the calibration fails, the screen shown in FIGURE 6-26 will be displayed, instructing the user to either repeat the calibration (by selecting the Repeat Cal button) or to replace the oxygen sensor. If the oxygen sensor must be replaced, select the Exit button, replace the oxygen sensor using a push and turn motion, and then repeat the calibration.

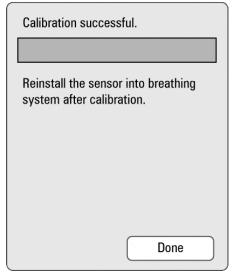


FIGURE 6-25 Oxygen Sensor Calibration Successful

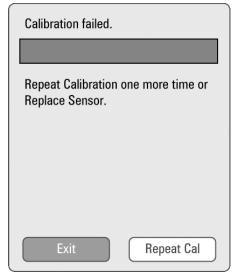


FIGURE 6-26 Oxygen Sensor Calibration Failed

6.8.5 Pneumatic Leak Tests

6.8.5.1 N₂O Cylinder Leak Test

- 1. Remove the N₂O line pressure hose from the line pressure inlet on the **AS3000**.
- 2. Mount a full N₂O cylinder to the rear panel yoke. If necessary, place a new clean tank washer between the cylinder and the yoke to minimize any leaks at the yoke connection.
- 3. Open the N₂O cylinder until its pressure gauge indicates cylinder pressure.
- 4. Close the N₂O cylinder.
- The N₂O cylinder pressure gauge should not drop more than 10% of its initial pressure over 1 minute.

6.8.5.2 O₂ Cylinder Leak Test

- 1. Remove the O₂ line pressure hose from the line pressure inlet on the **AS3000**.
- 2. Mount a full O₂ cylinder to the rear panel yoke. If necessary, place a new clean tank washer between the cylinder and the yoke to minimize any leaks at the yoke connection.
- 3. Open the O₂ cylinder until its pressure gauge indicates cylinder pressure.
- 4. Close the O2 cylinder.
- The O₂ cylinder pressure gauge should not drop more than 10% of its initial pressure over 1 minute.

6.8.5.3 AIR Cylinder Leak Test

- 1. Remove the AIR line pressure hose from the line pressure inlet on the **AS3000**.
- 2. Mount a full AIR cylinder to the rear panel yoke. If necessary, place a new clean tank washer between the cylinder and the yoke to minimize any leaks at the yoke connection.
- 3. Open the AIR cylinder until its pressure gauge indicates cylinder pressure.
- 4. Close the AIR cylinder.
- The AIR cylinder pressure gauge should not drop more than 10% of its initial pressure over 1 minute.

6.8.5.4 Line Supply Check Valves Test

- 1. Connect and open a full gas cylinder on each yoke.
- 2. Verify the cylinder gauges operate.
- 3. Remove each line pressure hose one at a time from the wall supply inlet.
- **4.** Verify no gas is escaping from any of the three central supply high pressure hoses connected to the **AS3000** using a Digital Flow Meter.
- 5. Verify there is no external damage to the gas supply inlet coupling on the AS3000.
- 6. Reattach each central supply gas hose to the wall supply inlets.

6.8.5.5 N₂O Line Pressure Leak Test

- Remove the N₂O cylinder from the AS3000.
- 2. Connect the N₂O line pressure hose to the line pressure inlet on the **AS3000**.
- **3.** Pinch the N_2O line pressure hose to stop N_2O line flow.
- **4.** Remove the N_2O line pressure hose from the N_2O line source.
- 5. The N₂O line pressure gauge should not fall more than 2 psi in 20 seconds.
- 6. Reconnect the N2O line pressure and remove the pinch in the hose.

6.8.5.6 O₂ Line Pressure Leak Test

- **1.** Remove the O_2 cylinder from the **AS3000**.
- **2.** Connect the O_2 line pressure hose to the line pressure inlet on the **AS3000**.
- **3.** Pinch the O_2 line pressure hose to stop O_2 line flow.
- **4.** Remove the O₂ line pressure hose from the O₂ line source.
- **5.** The O_2 line pressure gauge should not fall more than 2 psi in 20 seconds.
- **6.** Reconnect the O_2 line pressure and remove the pinch in the hose.

6.8.5.7 AIR Line Pressure Leak Test

- 1. Remove the AIR cylinder from the **AS3000**.
- 2. Connect the AIR line pressure hose to the line pressure inlet on the AS3000.
- **3.** Pinch the AIR line pressure hose to stop AIR line flow.
- **4.** Remove the AIR line pressure hose from the AIR line source.
- **5.** The AIR line pressure gauge should not fall more than 2 psi in 20 seconds.
- **6.** Reconnect the AIR line pressure and remove the pinch in the hose.

6.8.5.8 Cylinder Supply Check Valves Test

- 1. Close and remove all gas cylinders from the AS3000.
- 2. Verify the cylinder gauges return to zero.
- **3.** Using the Digital Flow Meter, verify that no gas is escaping from any of the three yoke connections on the **AS3000**.
- **4.** Verify there is no external damage to the gas cylinder or yoke pins.
- 5. Reconnect the cylinder(s) as necessary.

6.8.6 Breathing System Checks

6.8.6.1 Waste Gas Scavenger Test (if available)

 Connect one end of the low pressure waste gas hose to the port on the Waste Gas Scavenger Assembly. Connect the other end of the hose to the EVAC port.

NOTE: If operating the AS3000 with other types of waste gas scavenging, ensure that waste gases are directed from the EVAC port to that scavenging system.

- Connect the respiratory gas monitor exhaust output to the barbed fitting port on the Waste Gas Scavenger Assembly.
- 3. Cap any open ports on the waste gas scavenger assembly.
- Ensure that the waste gas scavenger flow adjustment is able to be set throughout its full range.

6.8.6.2 Internal Gas Connections Test

- 1. Close and remove all gas cylinders from the AS3000
- 2. Connect only the AIR line pressure hose to the **A53000** from the wall supply. Leave all other line pressure hoses disconnected.
- With the AS3000 powered OFF, rotate the AIR flow control knob to ensure a continuous flow increase throughout its full range
- Disconnect the AIR line pressure hose from the A\$3000, and connect the O₂ line pressure hose from the wall supply.
- **5.** Fully rotate the N₂O flow control knob and verify that there is no flow.
- 6. Fully rotate the AIR flow control knob and verify that there is no flow.

6.8.6.3 Drive Gas Pressure Loss Alarm, N₂O Cutoff Test

- **1.** Set the O_2 flow to 2 L/min using the flow control valve.
- 2. Set the N₂O flow to 2 L/min using the flow control valve.
- 3. Set the AIR flow to 2 L/min using the flow control valve.
- **4.** Interrupt the O_2 supply to the **AS3000**.
- **5.** Verify that the flow of N_2O and O_2 stops within 2 minutes and that the flow of AIR (if available) continues to flow at 2 L/min.
- 6. Verify the following alarms are activated:
 - O₂ Supply Failure appears on the screen
 - An alarm tone sounds.

6.8.7 Performance Verification

6.8.7.1 Standby Mode Ventilation Test

- 1. Ensure that the gas pressure for O_2 , N_2O , and AIR are at 50 ± 10 psi.
- Power ON the AS3000.
- Perform the start up tests per the on-screen instructions. Ensure successful completion.
- 4. Attach a breathing circuit and test lung to the Y-fitting of the breathing circuit.

NOTE: For testing purposes always use a reusable breathing circuit.

- **5.** Set the APL Valve to approximately **15** cm H_2O .
- **6.** Set the AIR flow to 5 L/min using the flow control valve.
- **7.** Squeeze the breathing bag once every 10 seconds to inflate and deflate the test lung to approximately 20 cmH₂O of pressure.
- 8. Verify the inflation and deflation of the test lung.

6.8.7.2 Manual Mode Ventilation Test

- 1. Set the Ventilation Mode to MANUAL.
- Set the APL Valve to approximately 25 cmH₂O. Push the O₂ Flush button to fill the breathing bag.
- 3. Set the AIR flow to 1 L/min using the flow control valve.
- **4.** Squeeze the breathing bag once every 3 seconds.
- 5. Verify the inflation and deflation of the test lung.
- Verify that an airway pressure waveform and all numeric values appear on screen during bag compressions.
- 7. Stop squeezing the breathing bag and set the APL Valve to the open position (SP).

6.8.7.3 APNEA Alarm Test

- 1. While in the Manual Ventilation Mode, stop ventilating the test lung.
- Verify that the following APNEA alarm signals activate at approximately 60 seconds from the last bag compression.
 - APNEA appears on the screen.
 - An alarm tone sounds.

6.8.7.4 Alarm MUTE Test

- 1. While the APNEA alarm is sounding, press the MUTE key.
- 2. Verify the audio portion of the alarm stops and resumes after 2 minutes.

6.8.7.5 CMV Adult Ventilation Mode Test

1. Attach a breathing circuit and breathing bag.

NOTE: For testing purposes always use a reusable breathing circuit.

- 2. Attach an adult test lung to the Y-fitting of the breathing circuit.
- 3. Attach a Vent Tester between the EXP port and the expiratory hose.
- **4.** Set the O_2 flow to 2 L/min and set the N_2O and AIR flow rates to minimum flow.
- 5. Set the ventilator controls to:

VENTILATOR CONTROLS	VENTILATOR SETTINGS
Patient Type	Adult
Ventilation Mode	CMV
Tidal Volume - V _T	600
Breath Rate - freq	8
I:E Ratio - I:E	1:2
Plateau - T _P	10
PEEP - PEEP	Off

- **6.** Select **CMV** again to begin ventilation.
- **7.** Verify that the pressure waveform, Tidal Volume, Mean or Plateau Pressure, Resp. rate and minute volume values appear on the screen.
- **8.** Verify the Tidal Volume display is within 15% of the set value within approximately 1 minute from the start of ventilation.
- **9.** Verify the Tidal Volume display is within 15% of the delivered volume measured with the Vent Tester within approximately 1 minute from the start of ventilation.
- **10.** Verify the measured O_2 concentration is at least 97% after 5 minutes.
- **11.** Set the AIR flow to 3 L/min and set the N_2O and O_2 flow rates to minimum flow.
- **12.** Verify the measured O_2 concentration is 21% ±3% vol. % after 5 minutes.

6 - 28 0070-10-0683 AS3000™ Service Manual

6.8.7.6 CMV Child Ventilation Mode Test

1. Attach a breathing circuit and breathing bag.

NOTE: For testing purposes always use a reusable breathing circuit.

2. Attach an adult test lung to the Y-fitting of the breathing circuit.

NOTE:

Limit the volume in the test lung to provide sufficient airway pressure to satisfy the Low Peak Pressure alarm. Or reduce the Peak Pressure alarm limit to a lower valve to prevent the alarm when using an adult test lung.

- 3. Attach a Vent Tester between the EXP port and the expiratory hose.
- **4.** Set the O_2 flow to 2 L/min and set the N_2O and AIR flow rates to minimum flow.
- **5.** Set the ventilator controls to:

VENTILATOR CONTROLS	VENTILATOR SETTINGS
Patient Type	Child
Ventilation Mode	CMV
Tidal Volume - V _T	120
Breath Rate - freq	20
I:E Ratio - I:E	1:2
Plateau - T _P	10
PEEP - PEEP	Off

- **6.** Select **CMV** to begin ventilation.
- **7.** Verify that the pressure waveform, Tidal Volume, Mean or Plateau Pressure, Resp. rate and minute volume values appear on the screen.
- **8.** Verify the Tidal Volume display is within 25ml or ±15% of the delivered volume (whichever is greater) measured with the Vent Tester within approximately 1 minute from the start of ventilation.
- 9. Verify the delivered volume as measured by a Vent Tester at the expiratory port, is within 17% of the Tidal Volume set value within approximately 1 minute from the start of ventilation.

6.8.7.7 Airway Disconnect Alarm Test

- While the ventilator is running, disconnect the expiratory limb from the Expiratory Port on the Breathing System.
- 2. Verify the following airway pressure disconnect alarm signals activate:
 - APNEA message appears on the screen.
 - Low Airway Pressure message appears on the screen.
 - An alarm tone sounds.

6.8.7.8 PCV Adult Ventilation Mode Test

1. Attach a breathing circuit and breathing bag.

NOTE: For testing purposes always use a reusable breathing circuit.

- 2. Attach an adult test lung to the Y-fitting of the breathing circuit.
- 3. Attach a Vent Tester between the EXP port and the expiratory hose.
- **4.** Set the O_2 flow to 3 L/min and set the N_2O and AIR flow rates to minimum flow.
- 5. Set the ventilator controls to:

VENTILATOR CONTROLS	VENTILATOR SETTINGS
Patient Type	Adult
Ventilation Mode	PCV
Target Pressure - PTARGET	20
Breath Rate - freq	8
I:E Ratio - I:E	1:2
PEEP - PEEP	Off
Inspiratory Slope - T _{slope}	0.5

- **6.** Select **PCV** to begin ventilation.
- **7.** Verify the Peak Pressure reading of the display is within ±4 cmH₂O of the Peak Pressure measured with the Vent Tester.
- **8.** Verify that the pressure waveform, Tidal Volume, Resp. Rate and minute volume values appear on the screen.
- **9.** Verify that the PEAK Value reaches 20 ±4 cmH₂O within five breaths from the start of ventilation.

6 - 30 0070-10-0683 AS3000™ Service Manual

6.8.7.9 Pressure Support (PS) Ventilation Mode Test

1. Attach a breathing circuit and breathing bag.

NOTE: For testing purposes always use a reusable breathing circuit.

- 2. Attach an adult test lung to the Y-fitting of the breathing circuit.
- 3. Attach a Vent Tester between the EXP port and the expiratory hose.
- **4.** Set the O_2 flow to 1 L/min and set the N_2O and AIR flow rates to minimum flow.
- 5. Set the ventilator controls to:

VENTILATOR CONTROLS	VENTILATOR SETTINGS	
Vent Dial Patient Type	Adult	
Vent Mode Ventilation Mode	PS	
Differential Pressure - Δ P	20	
PEEP - PEEP	Off	
Flow Trigger - Trigger	3	
Inspiratory Slope - T _{slope}	0.5	
Minimum frequency - freq _{MIN}	2	

- **6.** Select **PS** to begin ventilation.
- **7.** Begin triggering breaths by slightly squeezing the test lung and releasing. Maintain a continuous breath rate.
- 8. Verify that a pressure waveform and all ventilation parameters appear on the screen.
- **9.** Verify that the Peak Pressure reading on the display is ± 4 the value of ΔP + PEEP.
- 10. Stop triggering breaths.
- **11.** Verify that after 30 seconds the ventilator delivers a breath and displays the message **APNEA BACKUP**.
- 12. Verify the system ventilates with a frequency of 2 bpm

6.8.8 Alarms and Failsafe Functions

6.8.8.1 Set Up

- **1.** Ensure that the gas pressure for O_2 , N_2O , and AIR are at 50 ±10 psi.
- 2. Power ON the **AS3000**.
- 3. Perform the Startup Tests per the on-screen instructions. Ensure successful completion.
- 4. Attach a breathing circuit and breathing bag.

NOTE: For testing purposes always use a reusable breathing circuit.

- 5. Attach an adult test lung to the Y-fitting of the breathing circuit.
- **6.** Set the O_2 flow to 2 L/min and set the N_2O and AIR flow rates to minimum flow.
- 7. Set the ventilator controls to:

VENTILATOR CONTROLS	VENTILATOR SETTINGS
Patient Type	Adult
Ventilation Mode	CMV
Tidal Volume - V _T	600
Breath Rate - freq	8
I:E Ratio - I:E	1:2
Plateau - T _P	10
PEEP - PEEP	Off

8. Select **CMV** to begin ventilation.

6.8.8.2 Low FiO₂ Alarm Test

- **1.** Set the low FiO_2 Alarm limit to 50% O_2 .
- 2. Set the AIR flow control valve to 5 L/min.
- **3.** Set the FiO_2 flow controller to minimum flow.
- 4. Verify the following Low FiO₂ alarm signals activate, within three ventilation cycles:
 - Low FiO₂ message appears on the screen.
 - An alarm tone sounds.
- **5.** Set the Low FiO₂ alarm limit to 18%.
- **6.** Verify the alarm signals cease.

6.8.8.3 High FiO₂ Alarm Test

- **1.** Set the high FiO_2 Alarm limit to 49% O_2 .
- **2.** Set the FiO_2 flow control valve to 5 L/min.
- 3. Set the AIR flow controller to minimum.
- **4.** Verify the following High FiO₂ alarm signals activate:
 - **High FiO₂** message appears on the screen.
 - An alarm tone sounds.
- 5. Set the high FiO₂ alarm limit to the max setting.
- 6. Verify the alarm signals cease.

6.8.8.4 Peak Pressure Alarms Test

- 1. Set the PAW low alarm to the lowest setting.
- 2. Set the PAW high alarm limit set point about 5 to 8 digits below the Peak Pressure displayed on the upper left of the screen.
- 3. Verify the following (high) peak pressure alarms activate:
 - a. High Airway Pressure message appears on the screen.
 - **b.** An alarm tone sounds.
 - c. Inspiration ends and expiration begins as the pressure meets the high alarm limit.
- **4.** Set the PAW high alarm limit set point to 65 (cmH₂O).
- 5. Verify the alarms signals cease.
- **6.** Set the PAW low alarm limit set point to 50 (cmH₂O).
- 7. Verify the following (low) peak pressure alarms activate:
 - a. Low Airway Pressure message appears on the screen.
 - **b.** An alarm tone sounds.
- **8.** Set the PAW low alarm limit to 12 (cm H_2O).
- 9. Verify the alarm signals cease.

6.8.8.5 Minute Volume Alarm Test

- Set the MV Low alarm limit set point to the highest value.
- 2. Verify the following alarms activate:
 - Low MV message appears on the screen.
 - An alarm tone sounds.
- 3. Set the MV Low alarm limit to minimum setting.
- 4. Verify the the alarm signals cease.
- 5. Set the MV High alarm limit set point to the lowest value.
- 6. Verify the following alarms activate:
 - **High MV** message appears on the screen.
 - An alarm tone sounds.
- 7. Set the MV High alarm limit set point to the highest value
- 8. Verify that the alarm signals cease.

6.8.9 Miscellaneous Tests

6.8.9.1 Test the Line Voltage Alarm

- 1. Before starting this test, verify that the battery is fully charged. (The battery icon in the upper right corner of the screen is solid when the battery is fully charged.)
- 2. Interrupt AC line voltage.
- **3.** Verify that the following alarms activate:
 - An alarm tone sounds.
 - AC Power Failure message appears on the screen.
- 4. Verify that a fully charged battery operates the ventilator for a minimum of 45 minutes.
- 5. Plug the **AS3000** into AC line voltage.
- Verify that the alarm signals cease.
- 7. Verify the presence of the battery charging icon in the upper right corner of the screen (status bar moving from right to left).

6.8.9.2 Wheel Brakes Test

1. Verify that each front wheel brake operates.

6.8.9.3 Work Light Test

- 1. Turn on the work light located on the bottom side of the top panel.
- 2. Verify that it lights in both on positions.

6.8.9.4 Auxiliary Flowmeter

1. Verify an AIR flow of 15 L/min can be obtained by connecting the auxiliary AIR hose to the pressure source and opening the flow meter.

2. Verify an O_2 flow of 15 L/min can be obtained by connecting the auxiliary O_2 hose to the pressure source and opening the flow meter.

6.8.9.5 Patient Suction Regulator (if available)

- 1. Set the suction regulator's selection dial to LINE.
- 2. Verify maximum suction vacuum on the regulator's gauge.
- 3. Set the suction regulator's selection dial to **REGULATE**.
- 4. Verify the suction vacuum is adjustable on the regulator's gauge.
- 5. Set the suction regulator's selection dial to OFF.

6.8.10 Vaporizers

6.8.10.1 Vaporizer Interlock Test

- 1. Attach two vaporizers to the Vaporizer Mounting Manifold and lock them in place.
- 2. Rotate either of the vaporizer dial to 3% agent.
- 3. Verify that the other vaporizer dial cannot be rotated to a setting.
- 4. Set both vaporizer dials to 0.
- 5. Rotate the other vaporizer dial to 3%.
- 6. Verify that the first vaporizer dial cannot be rotated.
- **7.** Rotate both vaporizer dials to **T** and remove both vaporizers.
- **8.** Verify that the locking spring is intact.
- 9. Reconnect both vaporizers to the Vaporizer Mounting Manifold.

6.8.10.2 Vaporizer Accuracy Test

WARNING: Avoid exposure to respiratory gases by always directing the fresh gas flow from the fresh gas outlet to the waste gas scavenger.

- 1. Remove the Fresh Gas Hose from the Common Gas Outlet.
- Insert an endo-tracheal tube mask elbow adapter with monitoring port, into the Common Gas Outlet.
- **3.** Set the APL Valve to **70** cmH₂O.
- Remove the Waste Gas Scavenger Hose from the bottom of the Breathing System EVAC port. Leave the connection to the waste gas scavenger attached.
- 5. Set the waste gas scavenger flow above the minimum setting.
- **6.** Adapt the Waste Gas Scavenger Hose to connect to the endo-tracheal tube mask elbow, now connected to the Common Gas Outlet port.
- Attach the Agent Analyzer meter sampling tube to the endo-tracheal tube mask elbow's monitoring port.
- **8.** Fill the vaporizer with anesthetic agent (if necessary).

NOTE: Do not overfill by filling past the indicator line on the vaporizer.

- Test the vaporizer accuracy per the Dräger Vapor 2000 instructions (See section 6.8.10.4), or see the appropriate vaporizer manual for testing details.
- 10. Test each vaporizer in turn.
- 11. Test any vaporizer on the Vaporizer Storage Mount.
- 12. Remove the measuring equipment from the Common Gas Outlet.
- 13. Reconnect the Fresh Gas, and Waste Gas Scavenger Hoses.

6.8.10.3 Vaporizer Leak Test

NOTE: Verify the system has passed the leak test without the vaporizers prior to this test.

- 1. Verify that vaporizers are mounted correctly.
- **2.** Ensure that the gas pressure for O_2 , N_2O_2 , and AIR are at 50 ± 10 psi.
- 3. Power ON the **AS3000**.
- 4. Attach a reusable-silicone-rubber breathing circuit to the Breathing System.

NOTE: For testing purposes always use a reusable breathing circuit.

- 5. Tightly connect the Y-fitting on the breathing circuit to the test port.
- 6. Attach a breathing bag to the bag arm.
- **7.** Set the APL Valve to the fully closed position (**70** cm H_2O).
- **8.** Rotate the O₂ Flow Control Valve until 50 cmH₂O pressure is observed on the Airway Pressure Gauge.
- **9.** Verify that the necessary flow to stabilize the pressure is less than 300 mL/min.

6.8.10.4 Dräger Vapor 2000 Operating Instructions ARRB-F001

- 1. Fill Vaporizer at least half full between minimum and maximum mark.
- 2. Allow the filled Vapor to warm up to room temperature of 20-24°C. Wait long enough for the temperature to equalize the time will vary depending on the temperature differential 'Δ**T**'.
 - 1 hour = up top 2°C
 - 3 hours = ±6°C
 - 4 hours = $\pm 10^{\circ}$ C
 - 5 hours = $\pm 20^{\circ}$ C
- **3.** Check anesthetic agent monitor. Perform zero calibration of monitor with the desired gas (AIR or O₂)
- 4. Connect monitor to fresh gas outlet or Y-fitting. Make sure that all connections are leak-tight.
- 5. Connect and start scavenging system.
- **6.** Switch OFF ventilator or set vent pressure to less than 5 cmH₂O.
- 7. Set monitor to anesthetic agent being used and to continuous measurement.
- **8.** Set flow between 2.5 and 4 L/min AIR. Use O_2 if AIR is not available.
- 9. Check 0 and T marks, 1 vol.% 4 vol % and at least three other concentrations.
- 10. Adjust control dial on the vaporizer.
- 11. Read concentration after it has reached steady state.
- **12.** Correct measured values for the effect of carrier gas used. If AIR no correction required. If O₂ use following correction factor:
 - Measured value vol.% = <1.0, correction = -0.05 vol.%
 - Measured value vol.% = 1.0 2.0, correction = -0.1 vol.%
 - Measured value vol.% = 2.5 4.0, correction = -0.2 vol.%
 - Measured value vol% = 5.0 8.0, correction = -0.3 vol.%
- **13.** If the value displayed on the monitor is in % partial pressure, no correction is required. If in vol.% convert to partial pressure:
 - Concentration [% partial pressure] = measured value [vol.%] x atmospheric pressure [cmH₂O] / 1013 cmH₂O
- 14. For setting 0 and T there should be no output of anesthetic agent.
 - At 1 vol.%; 0.8 1.2 vol.% *
 - At 2 vol.%; 1.8 2.2 vol.% *
 - At 3 vol.%; 2.8 3.2 vol.% *
 - At 4 vol.%; 3.8 4.2 vol.% *
 - At 5 vol.%; 4.8 5.2 vol.% *
 - At 6 vol.%; 5.7 6.3 vol.% *
 - At 7 vol.%; 6.7 7.3 vol.% *
 - At 8 vol.%; 7.7 8.3 vol.% *
 - * = Correct for temperature and carrier gas if necessary.
- **15.** Switch off the vaporizer until **0** engages.
- **16.** Switch off the AIR or O_2 flow.

6.8.11 Electrical Tests

CAUTION: Perform the electrical safety inspection as the last step after completing a repair or after routine maintenance. Perform this inspection with all covers, panels, and screws installed.

6.8.11.1 Convenience AC Outlets Test

1. Verify AC voltage is present at each AC outlet with the **AS3000** Mains switch in both the **ON** and **OFF** positions.

6.8.11.2 Electrical Safety Inspection Test

NOTE: Perform the electrical safety inspection as the last step after completing a repair or after routine maintenance. Perform this inspection with all covers, panels, and screws installed.

- Unplug the Power cable(s) from the convenience receptacles at the rear of the AS3000.
- 2. Plug the AS3000 into a Safety Analyzer.
- **3.** Connect the case ground lead of the analyzer to the U-blade ground of one of the convenience receptacles. Perform the following tests with the case grounded:
 - Normal polarity
 - Normal polarity with open neutral
- **4.** Perform the following tests with the case ungrounded:
 - Normal polarity
 - Normal polarity with open neutral
 - Reverse polarity
- 5. Verify that the maximum leakage current does not exceed 300 μA (0.3 mA).

6.8.12 AS3000 Installation Checklist

Refer to section 2.0 (pg. 2-1) "Installation Guide" for the installation checkout procedure. Complete each step to check the functionality of the anesthesia machine prior to clinical use. Also, perform the installation checkout procedure after installation, reinstallation, servicing or after any periodic maintenance activity. This checklist does not replace periodic maintenance actions that must be performed to maintain peak performance.

Periodic Maintenance Cleaning

6.9 Cleaning

6.9.1 Cleaning and Disinfecting the AS3000

Before cleaning, switch off the AS3000 and disconnect it from the mains.

NOTE: See the "AS3000 Operating Instructions"

(P/N: 0070-00-0684-XX) for more in-depth cleaning

instructions.

6.9.2 Cleaning and Sterilizing the Breathing System and Components

Cleaning method and chemical

COMPONENT	SOAP WATER	CHEMICALS CIDEX	STERILIZATION STEAM AUTOCLAVE	MAXIMUM TEMPERATURE (°F/°C)
Absorber canister	yes	yes	no	
Airway pressure gauge	no	no	no	
APL Valve	yes	yes	no	
Valve cover and valve nut	yes	yes	no	
Breathing System module (without the above mentioned)	yes	yes	yes	273°F/134°C
AGSS	yes	yes	no	

The components in the above table should be rinsed in warm water thoroughly and dried in air after cleaning or sterilizing.

6.10 Preoperative Checklist

This checklist should be conducted before administering anesthesia.

NOTE: This is a guideline which can be modified to accommodate variations in local clinical practice. Such local modifications

should have appropriate peer review.

If an anesthetist uses the same machine in successive cases, this checkout need not be repeated or may be abbreviated after the initial checkout.

1. Inspect the system for:

- a. Identification number
- **b.** Valid inspection sticker
- c. Damage to flowmeters, vaporizers, gauges, and supply hoses
- d. Complete Breathing System with adequate CO₂ absorbent Pre-Paks or loose fill
- e. Correct mounting of gas cylinders in the yokes
- f. Presence of the Tank Wrench

Preoperative Checklist Periodic Maintenance

2. Per manufacturers' specifications, turn ON the patient monitors to allow time for their warm-up (ECG, Blood Pressure, SpO₂, Gas Monitoring, etc.).

3. Prepare the Anesthetic Gas Scavenging System (AGSS).

- a. Remove the AGSS from the AS3000. While viewing the float, turn the AGSS upside down to verify whether the float moves freely along its shaft. Replace the float as necessary. Reconnect the AGSS to the AS3000.
- **b.** Connect the vacuum hose to the vacuum port on the AGSS. Adjust the position of the float to be between the Min and Max lines by turning its flow adjustment knob (counterclockwise increases flow, clockwise decreases flow).
- C. Drain any moisture from the waste gas hose. Connect the waste gas hose to the AGSS waste gas port.

4. Verify that:

- a. Flow-control valves are off
- **b.** Vaporizers are off
- Vaporizers are filled.
- d. Vaporizer Filler caps are sealed tightly.

5. Check oxygen (O2) cylinder supply:

- **a.** Disconnect line pressure hoses (if connected) and return the cylinder and line pressure gauges to zero using O₂ flush valve.
- **b.** Open the O₂ cylinder, and check for pressure.
- c. Close the O₂ cylinder and observe the pressure gauge for evidence of high-pressure leaks.
- **d.** Press the O₂ flush valve to empty the piping.
- e. A typical full O₂ cylinder's pressure is 1900 psi. Replace the cylinder if its pressure is less than 1000 psi.
- f. Reopen the cylinder.

6. Check nitrous oxide (N2O) cylinder supply:

- **a.** Disconnect line pressure hoses (if connected) and return the cylinder and line pressure gauges to zero using the flow control knobs.
- **b.** Open the N₂O cylinder, and check for pressure.
- **c.** Close the N₂O cylinder and observe the pressure gauge for evidence of high-pressure leaks.
- **d.** A typical full N₂O cylinder's pressure is 745 psi. Replace the cylinder if its pressure is less than 600 psi.
- e. Reopen the cylinder.

Periodic Maintenance Preoperative Checklist

7. Check AIR cylinder supply:

- **a.** Disconnect line pressure hoses (if connected) and return the cylinder and line pressure gauges to zero using the flow control knobs.
- **b.** Open the AIR cylinder, and check for pressure.
- c. Close the AIR cylinder and observe the pressure gauge for evidence of high-pressure leaks.
- d. A typical full AIR cylinder's pressure is 1900 psi. Replace the cylinder if its pressure is less than 1000 psi.
- e. Reopen the cylinder.

8. Power up the system and follow the on-screen prompts to perform the Leak and Compliance Tests.

9. Test Flowmeters:

- a. Check that all floats are at the bottom of the flow tubes with the flow control valves closed.
- **b.** Adjust the flow of all gases through their full range and check the floats for erratic movements.

10. Test Hypoxic-Guard System:

For -01 units:

- a. Attempt to create hypoxic O₂/N₂O mixture by slowly opening the N₂O Flow Control Valve.
- **b.** Continue to increase the N_2O flow and observe O_2 and N_2O rise in proportion to maintain a minimum concentration of 21% O_2 in fresh gas.

For -02 units:

- a. Attempt to create hypoxic O₂/N₂O mixture by opening the N₂O flow control valve completely.
- **b.** Increase the O_2 flow and observe O_2 and N_2O rise in proportion to maintain a minimum concentration of 21% O_2 in fresh gas.

11. Test Line Pressure Gas Supplies:

- a. Inspect the supply hoses (should not be cracked or worn).
- **b.** Connect the supply hoses, verifying correct color coding.
- c. Adjust both the O₂ and N₂O flows to at least mid-range.
- **d.** Verify that the O_2 and N_2O supply pressures hold (45–55 psi).
- **e.** Shut off the O_2 and N_2O flow control valves.
- f. Adjust the AIR flow to at least mid-range.
- g. Verify that the AIR supply pressure hold (45–55 psi).
- h. Shut off the AIR flow control valve.

12. Accessories Connection:

- a. Connect a breathing circuit to the Breathing System.
- **b.** Connect a breathing bag to the bag arm.

Preoperative Checklist Periodic Maintenance

13. Check Unidirectional Valves:

- a. Set the Ventilation mode to STANDBY.
- **b.** Set the APL Valve to **20** cmH₂O
- c. Attach a test lung to the Y-fitting of the breathing circuit.
- **d.** Set the AIR flow to 5 L/min.
- e. Press the O₂ Flush Valve to fill the breathing bag with volume.
- **f.** Slowly squeeze the breathing bag once every 10 seconds.
- g. Verify that the test lung inflates and deflates.
- h. Verify that the inspiratory unidirectional valve opens when the test lung inflates.
- i. Verify that the expiratory unidirectional valve opens when the test lung deflates.

14. Test drive gas pressure failure system:

- ${f a.}$ Set the ${f O_2}$, ${f N_2O}$, and AIR gas flows to mid-range using the flow control knobs.
- **b.** Close the O_2 gas cylinder using the Tank Wrench.
- **c.** Verify that the O_2 and N_2O flows fall to zero.
- **d.** Verify that:
 - An alarm tone sounds.
 - The alarm message O₂ Supply Failure is displayed on the screen.
- **e.** Open the O₂ gas cylinder. Verify that the alarm tone stops and the alarm message is removed from the screen.
- f. Close all gas cylinders.
- g. Remove the O₂ cylinder from the **AS3000**.
- **h.** Verify that:
 - An alarm tone sounds.
 - the alarm message O₂ Supply Failure is displayed on the screen.
- i. Shut off all flow control valves.

15. High Pressure Leak Test:

- a. Connect a breathing circuit and breathing bag to the Breathing System.
- **b.** Set APL Valve to **70** cmH₂O.
- c. Connect the breathing circuit Y-fitting to the test port on the AS3000.
- **d.** Inflate breathing bag by pressing the O₂ Flush Valve until the pressure gauge reaches 40 cmH₂O.
- e. Verify that breathing circuit holds pressure for a minimum of 10 seconds.

Periodic Maintenance Preoperative Checklist

16. Test the Ventilator in STANDBY mode:

- a. Set the APL Valve to 20 cmH2O.
- **b.** Attach a test lung to the breathing circuit Y-fitting.
- c. Set the AIR flow to 5 L/min.
- **d.** Press the O₂ Flush Valve to fill the breathing bag with volume.
- e. Squeeze the breathing bag once every 10 seconds.
- f. Verify that the test lung inflates and deflates.
- g. Set the APL Valve to the open position (SP) and stop squeezing the breathing bag.

17. Test the Ventilator in MANUAL mode:

- a. Set the ventilation mode to MANUAL.
- **b.** Set the APL Valve to **20** cmH₂O.
- c. Set the AIR flow to 5 L/min.
- **d.** Squeeze the breathing bag once every 10 seconds.
- e. Verify that the test lung inflates and deflates to approximately 20 cmH₂O pressure.
- f. Verify that tidal volume, resp. rate, minute volume, and PEEP values appear on the screen.
- **g.** Verify that the FiO₂ reading is approximately 21.
- h. Verify a pressure waveform appears on the screen along with the bag compressions.
- i. Set the APL Valve to the open position (SP) and stop squeezing the breathing bag.

18. Test the Tidal Volume in CMV mode:

- **a.** Set the O_2 flow to 2 L/min and set the N_2O and AIR flow rates to minimum flow.
- **b.** Set the ventilator controls to:

ATTRIBUTE	SETTING
Patient Type	Adult
Ventilation Mode	CMV
Tidal Volume - V _T	600
Breathing Rate - freq	8
I:E Ratio - I:E	1:2
Plateau - T _P	10
PEEP - PEEP	OFF

- c. Select CMV to begin ventilation.
- **d.** Verify that the Tidal Volume display is within 15% of the set value within 5 breaths.
- e. Verify that the O₂ display reads greater than 95% within 5 minutes.

Preoperative Checklist Periodic Maintenance

19. Test the Tidal Volume in the PCV ventilation mode:

 $\textbf{a.} \;\; \text{Set the O}_2 \; \text{flow to 2 L/min} \; \text{and set the N}_2\text{O} \; \text{and AIR} \; \text{flow rates to minimum flow}.$

b. Set the ventilator controls to:

ATTRIBUTE	SETTING
Patient Type	Adult
Ventilation Mode	PCV
Target Pressure - P TARGET	20
Breathng Rate - freq	8
I:E Ratio - I:E	1:2
PEEP - PEEP	Off
Inspiratory Slope - Tslope	0.5

- c. Select PCV to begin ventilation.
- **d.** Verify that the PEAK Pressure settles within ±4 of the set value within 3 breaths.
- e. Re-activate CMV ventilation mode.

20. Low FiO₂ Alarm Test

- **a.** Set the low FiO_2 Alarm limit to 50% O_2 .
- **b.** Set the AIR flow control valve to 5 L/min.
- **c.** Set the FiO_2 flow controller to minimum flow.
- ${f d.}$ Verify the following Low FiO $_2$ alarm signals activate, within three ventilation cycles:
 - Low FiO₂ message appears on the screen.
 - An alarm tone sounds.
- e. Set the Low FiO₂ alarm limit to 18%.
 - · Verify the alarm signals stop activating.

21. High FiO₂ Alarm Test

- **a.** Set the high FiO_2 Alarm limit to 49% O_2 .
- **b.** Set the FiO_2 flow control valve to 5 L/min.
- c. Set the AIR flow controller to minimum.
- **d.** Verify the following High FiO₂ alarm signals activate:
 - High FiO₂ message appears on the screen.
 - An alarm tone sounds.
- e. Set the high FiO₂ alarm limit to the max setting.
 - Verify the alarm signals stop activating.

Periodic Maintenance Preoperative Checklist

22. High and Low PAW Alarm Test

- a. Set the PAW low alarm to the lowest setting.
- **b.** Set the PAW high alarm limit set point about 5 to 8 digits below the Peak Pressure displayed on the upper left of the screen.
- c. Verify the following (high) peak pressure alarms activate:
 - **High Airway Pressure** message appears on the screen.
 - An alarm tone sounds.
 - Inspiration ends and expiration begins as the pressure meets the high alarm limit.
- **a.** Set the PAW high alarm limit set point to 65 (cmH₂O).
- **b.** Verify the alarms signals cease.
- c. Set the PAW low alarm limit set point to 50 (cmH₂O).
- d. Verify the following (low) peak pressure alarms activate:
 - Low Airway Pressure message appears on the screen.
 - An alarm tone sounds.
- **a.** Set the PAW low alarm limit to 12 (cmH₂O).
- **b.** Verify the alarm signals cease.

23. Low MV and APNEA Alarm Test

- a. Set the PAW low alarm to the lowest setting.
- **b.** Set the PAW high alarm limit set point about 5 to 8 digits below the Peak Pressure displayed on the upper left of the screen.
- c. Verify the following (high) peak pressure alarms activate:
 - High Airway Pressure message appears on the screen.
 - An alarm tone sounds.
 - Inspiration ends and expiration begins as the pressure meets the high alarm limit.
- **d.** Set the PAW high alarm limit set point to 65 (cmH₂O).
- e. Verify the alarms signals cease.
- **f.** Set the PAW low alarm limit set point to 50 (cmH₂O).
- g. Verify the following (low) peak pressure alarms activate:
 - Low Airway Pressure message appears on the screen.
 - An alarm tone sounds.
- **h.** Set the PAW low alarm limit to 12 (cm H_2O).
- i. Verify the alarm signals cease.
- j. Press the MANUAL/AUTO key.
- **k.** After 60 seconds, verify that:
 - An alarm tone sounds.
 - the alarm message "APNEA" is displayed on screen.

Preoperative Checklist Periodic Maintenance

- 24. Place the system in STANDBY mode.
- 25. Check for appropriate level of patient suction.
- 26. Check, connect, and calibrate other electronic monitors.
- 27. Turn on and set other appropriate alarms for equipment to be used.
- NOTE: The following step should be performed every 3 days or when prompted by the machine.
- 28. Perform the Oxygen Sensor Calibration (Refer to section 6.8.4.6 (pg. 6-22) "Oxygen Sensor Calibration").
- NOTE: The following step should be performed weekly or whenever a new vaporizer is installed or when CO₂ absorbent is replaced.
- 29. Test for leaks in the machine and vaporizers by performing the High Pressure Leak Test as described in step 15 of this section.

6 - 46 0070-10-0683 AS3000™ Service Manual

6.11 Phone Numbers and How To Get Assistance

A network of service representatives and factory-trained distributors is available. Prior to requesting service, perform a complete operational check of the instrument to verify proper control settings. If operational problems continue to exist, contact the Service Department at (800) 288-2121, ext: 8116 for Technical Support or (201) 995-8000 for assistance in determining the nearest field service location.

Please include the instrument model number, the serial number, and a description of the problem with all requests for service.

Warranty questions should be directed to a local representative. A list of offices, along with their phone numbers, is provided at the end of this manual.

Upon request, calibration instructions or other information will be provided to assist the user's appropriately qualified technical personnel in repairing those parts of the AS3000 which are designated as repairable. This page intentionally left blank.

Warranty

7.1 Warranty Statements

Mindray DS USA, Inc. warrants that components within the anesthesia system will be free from defects in workmanship and materials for the number of years shown on the invoice. Under this extended warranty, Mindray DS USA, Inc. will repair or replace any defective component at no charge for labor and/or materials. This extended warranty does not cover consumable items such as (but not limited to) batteries and external cables.

Recommended preventative maintenance, as prescribed in the Service Manual, is the responsibility of the user, and is not covered by this warranty.

Except as otherwise provided herein, the terms, conditions, and limitations of Mindray DS USA, Inc.'s standard warranty will remain in effect.

Mindray DS USA, Inc. warrants that its products will be free from defects in workmanship and materials for a period of one (1) year from the date of purchase except that disposable or one-time use products are warranted to be free from defects in workmanship and materials up to a date one year from the date of purchase or the date of first use, whichever is sooner. This warranty does not cover consumable items such as, but not limited to, batteries, external cables, sensors, cuffs, hoses, or mounts.

Mindray DS USA, Inc. will not be liable for any incidental, special, or consequential loss, damage, or expense directly or indirectly arising from the use of its products, liability under this warranty and the buyer's exclusive remedy under this warranty is limited to servicing or replacing at Mindray DS USA, Inc.'s option at the factory or at an authorized distributor, any product which shall under normal use and service appear to the Company to have been defective in material or workmanship.

Disclaimers Warranty

No agent, employee, or representative of Mindray DS USA, Inc. has any authority to bind Mindray DS USA, Inc. to any affirmation, representation, or warranty concerning its products, and any affirmation, representation or warranty made by any agent, employee, or representative shall not be enforceable by buyer.

This warranty is expressly in lieu of any other express or implied warranties, including any implied warranty or merchantability or fitness, and of any other obligation on the part of the seller.

Damage to any product or parts through misuse, neglect, accident, or by affixing any non-standard accessory attachments or by any customer modification voids this warranty.

Mindray DS USA, Inc. makes no warranty whatever in regard to trade accessories, such being subject to the warranty of their respective manufacturers.

A condition of this warranty is that this equipment or any accessories which are claimed to be defective be returned when authorized, freight prepaid to Mindray DS USA, Inc., Mahwah, New Jersey 07430. Mindray DS USA, Inc. shall not have any responsibility in the event of loss or damage in transit.

Calibration may be performed without the need to disassemble the instrument. It is the responsibility of the purchaser to perform calibration as necessary, in accordance with the instructions provided in this manual.

7.2 Disclaimers

7.2.1 Product Improvements

Mindray DS USA, Inc. retains the right to modify the machine and/or operating instructions without prior notification. These operating instructions explain all features of the **AS3000** system and are correct at time of manufacture. Instructions and models produced at a later stage, may contain improvements or modifications that were not included in previous models.

7.3 Manufacturer's Responsibility

The effects on safety, reliability, and performance of the equipment are the manufacturer's responsibility only if:

- assembly operations, extensions, readjustments, modifications or repairs are carried out by authorized personnel; and
- **b.** the electrical installation of the relevant room complies with the appropriate requirements; and
- c. the equipment is used in accordance with the instructions for use

This page intentionally left blank.

```
Mindray DS USA, Inc. • 800 MacArthur Boulevard • Mahwah, NJ 07430 • USA • Dom. Customer Service: 1.800.288.2121 • Intl. Customer Service: +1.201.995.8000 • Dom. Fax: 1.800.926.4275 • Intl. Fax: +1.201.995.8680 • www.mindray.com
```

Mindray Medical Netherlands B.V. • Drs. W. van Royenstraat 8 • P.O. Box 26 • 3870 CA Hoevelaken • The Netherlands • Tel: +31 33 25 44 911 • Fax: +31 33 25 37 621

Mindray (UK) Limited • 3 Percy Road • St. John's Park • Huntingdon • Cambridgeshire PE29 6SZ • United Kingdom • Tel: 01480 416840 • Fax: 01480 436588

Mindray Medical France SARL • Europarc Créteil • 123, Chemin des Bassins • 94035 Créteil Cedex • France • Tel: (0)1.45.13.91.50 • Fax: (0)1.45.13.91.51

Mindray Medical Germany GmbH • Zwischen den Bächen 4 • 64625 Bensheim • Deutschland • Tel: +49.6251.17524-0 • Fax: +49.6251.17524-20

Mindray Medical International Ltd. • 2813 Office Tower, Convention Plaza • No 1 Harbour Road • Wanchai • Hong Kong • Tel: +852 2793 5596 • Fax: +852 2344 8824

Medstar Importação e Exportação Ltda • Av. Vereador José Diniz, 3300 • São Paulo, SP • CEP 04804-000 • Brazil • Tel: 55 11 2872-3385 • Fax: 55 11 2872-3385